# Algebra II Curriculum Guide Tier 1 & 2

Unit 4: Trigonometric functions April 15 – May 31



ORANGE PUBLIC SCHOOLS 2018-2019
OFFICE OF CURRICULUM AND INSTRUCTION
OFFICE OF MATHEMATICS

## Algebra II Unit 4 **Contents**

| Unit Overview               |     |
|-----------------------------|-----|
| Common Core State Standards |     |
| Essential Unit Goals        |     |
| Calendar                    | 6   |
| Assessment Framework        | 8   |
| Scope and Sequence          | 9   |
| Ideal Math Block            | 16  |
| Sample Lesson Plan          | 188 |
| Multiple Representations    | 22  |

#### **Unit Overview**

#### **Unit 5:** Trigonometric function

#### Overview

This course uses Agile Mind as its primary resource, which can be accessed at the following URL:

www.orange.agilemind.com

Each unit consists of 1-3 topics. Within each topic, there are "Exploring" lessons with accompanying activity sheets, practice, and assessments. The curriculum guide provides an analysis of teach topic, detailing the standards, objectives, skills, and concepts to be covered. In addition, it will provide suggestions for pacing, sequence, and emphasis of the content provided.

#### **Essential Questions**

- What does the number of solutions (none, one or infinite) of a system of linear equations represent?
- What are the advantages and disadvantages of solving a system of linear equations graphically versus algebraically?

#### **Enduring Understandings**

- > Systems of equations are used to model situations involving interacting functions with the same variables.
- > Systems of equations are useful for making informed choices when presented with more than one option.
- The solution to a system of equations is the ordered pair that satisfies both equations. In real world situations, it is typically the break-even point.

#### Common Core State Standards

- 1) A-CED A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- 2) ACEDA3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non- viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
- 3) A-REI.6: Solve systems of equations 6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
- 4) A.REI.7: Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle x2 + y2 = 3.
- A.REI.11: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
- 6) G.SRT.C. 6: Define trigonometric ratios and solve problems involving right triangles 6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles
- 7) F.IF.B.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

- 8) F.IF.C.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
- 9) F.BF.3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
- 10) F.TF.1: Understand radian measure of an angle as the length of the unit circle subtended by the angle.
- 11) F.TF.2: Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
- 12) F.TF.5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
- 13) F.TF.8: Prove the Pythagorean identity  $\sin 2(\theta) + \cos 2(\theta) = 1$  and use it to find  $\sin(\theta)$ ,  $\cos(\theta)$ , or  $\tan(\theta)$  given  $\sin(\theta)$ ,  $\cos(\theta)$ , or  $\tan(\theta)$  and the quadrant of the angle

Major Content
Supporting Content
Additional Content

Parts of standard not contained in this unit

Algebra I Content

#### Unit 4: Trigonometry (35 days)

- Trigonometric ratios (supplement materials)
- Radian to degree and vice versa
- Unit circle and the parent graph of sine, cosine.
- Key features of Trigonometric functions(Sine and cosine)
- Sketching trigonometric function (Sine and cosine)

|                                                    | metric function (Sine and |                                                                                              |
|----------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|
| Big Rock CCSS                                      | Related Topic             | Lesson Objective                                                                             |
| F.TF.1: Understand radian                          | Trig Function             | 1.1( F.TF.1)                                                                                 |
| measure of an angle as the                         |                           | Given the unit circle Students will                                                          |
| length of the unit circle                          |                           | <ul> <li>Understand the radian measure of an angel and</li> </ul>                            |
| subtended by the angle.                            |                           | convert degree to radian and vice versa                                                      |
|                                                    |                           | <ul> <li>Use radian as unit to solve problems</li> </ul>                                     |
| G.SRT.C. 6: Define trigonometric                   |                           |                                                                                              |
| ratios and solve problems                          |                           | 2.1a (G.SRT.C. 6:)                                                                           |
| involving right triangles 6.                       |                           | Given a right triangle students will                                                         |
| Understand that by similarity,                     |                           | <ul> <li>Understand and Find the trig ratios</li> </ul>                                      |
| side ratios in right triangles are                 |                           |                                                                                              |
| properties of the angles in the                    |                           | 2.1b: Given real world problems students will                                                |
| triangle, leading to definitions of                |                           | Use angles of elevation and depression to                                                    |
| trigonometric ratios for acute                     |                           | solve problems                                                                               |
| angles                                             |                           | find the angle measure of elevation or                                                       |
| F.int 1 – 2: Given a verbal                        |                           | depression for the given information                                                         |
| description of a polynomial,                       |                           | 2.2 (F.TF.2)                                                                                 |
|                                                    |                           | Given a unit circle students will                                                            |
| exponential, trigonometric, or                     |                           |                                                                                              |
| logarithmic functional                             |                           | Draw angles and co terminal angles in                                                        |
| dependence, write an                               |                           | standard position                                                                            |
| expression for the function                        |                           | Find reference angles                                                                        |
| and demonstrate various                            |                           | Understand the circular definition of                                                        |
| knowledge and skills                               |                           | trigonometric functions and the graphs of y                                                  |
| articulated in the Functions                       |                           | =sinα and x $=$ cosα                                                                         |
| category in relation to this                       |                           |                                                                                              |
| function                                           |                           | 2.3a ( <mark>F.IF.B.4</mark>                                                                 |
|                                                    |                           | Given graphs and equations of sine and cosine Students                                       |
| F.TF.2: Explain how the unit                       |                           | will                                                                                         |
| circle in the coordinate plane                     |                           | Identify period, midline and amplitude of the                                                |
| enables the extension of                           |                           | function                                                                                     |
| trigonometric functions to all                     |                           | Identify phase shift of the function                                                         |
| real numbers, interpreted as                       |                           |                                                                                              |
| radian measures of angles                          |                           | 2.3b (F-IF.7e)                                                                               |
| traversed counterclockwise around the unit circle. |                           | Given and sine and cosine function                                                           |
| around the unit circle.                            |                           | Students will graph the sine cosine function     showing interpretate provided amplitude and |
| F.TF.5. Choose trigonometric                       |                           | showing intercepts, period, amplitude, and                                                   |
| functions to model periodic                        |                           | midline.                                                                                     |
| phenomena with specified                           |                           |                                                                                              |
| prichofficha with specified                        |                           |                                                                                              |

Algebra II Unit 4 amplitude, frequency, and midline.

F.BF.3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

F.IF.B.4:. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

F-IF.7e: Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

F.TF.8: Prove the Pythagorean identity  $\sin^2(\theta) + \cos^2(\theta) = 1$  and use it to find  $\sin(\theta)$ ,  $\cos(\theta)$ , or  $\tan(\theta)$  given  $\sin(\theta)$ ,  $\cos(\theta)$ , or  $\tan(\theta)$  and the quadrant of the angle

#### 2.4 (F.TF.8)

Given the Pythagorean Identity Students will

• Use the Pythagorean identity to find  $sin(\theta)$ ,  $cos(\theta)$ , or  $tan(\theta)$  and the quadrant of the angle

## Algebra II Unit 4 **Calendar**

|     | April 2019                |                           |                           |                           |                          |     |  |  |  |
|-----|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|-----|--|--|--|
| Sun | Mon                       | Mon Tue                   |                           | Wed Thu                   |                          | Sat |  |  |  |
|     | 1                         | 2                         | 3                         | 4                         | 5                        | 6   |  |  |  |
| 7   | 8                         | 9                         | 10                        | 11                        | 12                       | 13  |  |  |  |
| 14  | 15                        | 16                        | 17                        | 18                        | 19                       | 20  |  |  |  |
|     |                           |                           |                           |                           | Good Friday<br>No School |     |  |  |  |
| 21  | 22                        | 23                        | 24                        | 25                        | 26                       | 27  |  |  |  |
|     | Spring Break<br>No School | Spring Break<br>No School | Spring Break<br>No School | Spring Break<br>No School | Spring Break No School   |     |  |  |  |
| 28  | 29                        | 30                        |                           |                           |                          |     |  |  |  |
|     | Review for<br>PARCC       | Review for PARCC          |                           |                           |                          |     |  |  |  |

| May 2019 (PARCC Testing for 1 week) |                 |     |                  |                  |                  |     |  |  |
|-------------------------------------|-----------------|-----|------------------|------------------|------------------|-----|--|--|
| Sun                                 | Mon             | Tue | Wed              | Thu              | Fri              | Sat |  |  |
|                                     |                 |     | 1                | 2                | 3                | 4   |  |  |
|                                     |                 |     | Review for PARCC | Review for PARCC | Review for PARCC |     |  |  |
| 5                                   | 6               | 7   | 8                | 9                | 10               | 11  |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
| 12                                  | 13              | 14  | 15               | 16               | 17               | 18  |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
| 19                                  | 20              | 21  | 22               | 23               | 24               | 25  |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
| 26                                  | 27              | 28  | 29               | 30               | 31               |     |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
|                                     | Memorial<br>Day |     |                  |                  |                  |     |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |
|                                     |                 |     |                  |                  |                  |     |  |  |

#### **Assessment Framework**

| Assessment                                | Assignment<br>Type      | Grading                         | Source                                          | Estimated<br>in-class<br>time | When?                                     |
|-------------------------------------------|-------------------------|---------------------------------|-------------------------------------------------|-------------------------------|-------------------------------------------|
| Diagnostic Assessment Unit 4 Diagnostic   | Test                    | Traditional<br>(zero<br>weight) | Curriculum Dept. created – see Dropbox          | < ½ block                     | Beginning of unit                         |
| NWEA SPRING                               | Test                    | Online                          | MAP app in chrome book                          | 1 block                       | April                                     |
| MP4 Benchmark<br>Assessment               | Test                    | Online and<br>Rubric            | Edulastic                                       | 1 block                       | In MP 4                                   |
| Teacher Created<br>Assessments            | Test                    | Traditional                     | Teacher Created                                 | 2 blocks                      | In MP4                                    |
| Performance Task Unit 4 Performance Task1 | Authentic<br>Assessment | Rubric                          | Topic constructed response (also see Dropbox)   | ½ block                       | In topic 8                                |
| Performance Task Unit 4 Performance Task2 | Authentic<br>Assessment | Rubric                          | Topic constructed response (also see Dropbox)   | ½ block                       | In topic 9                                |
| Quizzes                                   | Quiz                    | Rubric or<br>Traditional        | Teacher created or<br>"Practice" in Agile Minds | < ½ block                     | Varies (must<br>have 3 quizzes<br>per MP) |

# Algebra II Unit 4 Scope and Sequence

|       | Overview                                        |                      |                   |  |  |  |  |
|-------|-------------------------------------------------|----------------------|-------------------|--|--|--|--|
| Topic | Name                                            | Agile Mind "Blocks"* | Suggesting Pacing |  |  |  |  |
| N/A   | Transition lesson: Pythagorean Theorem          | n/a                  | 1 day             |  |  |  |  |
| N/A   | Transition lesson: Similarity                   | n/a                  | 1 day             |  |  |  |  |
| 15    | Geometry: Right Triangle and Trig Relationships | 2 blocks             | 1 day             |  |  |  |  |
| 20    | Algebra 2: Trigonometric function               | 6(including tangent) | 3 days            |  |  |  |  |
|       | Supplemental Resources                          |                      | 4 days            |  |  |  |  |

| Diagnostic Assessment  | ½ day     |
|------------------------|-----------|
| Transition lesson      | ½ - 1 day |
| Mid Unit Assessment    | 1 day     |
| End of Unit Assessment | 1 day     |
| Performance Task 1     | ½ day     |
| Review                 | 1 day     |
| Total                  | 15 days   |

<sup>\*1</sup> Agile Mind Block = 45 minutes

#### Geometry Topic 15: Right Triangle and trig relationships (Transition lesson)

Topic Objectives (Note: these are not in 3-part or SMART objective format)

- 1. Develop the side-length relationships for  $45^{\circ}-45^{\circ}-90^{\circ}$  and  $30^{\circ}-60^{\circ}-90^{\circ}$
- 2. Explore trigonometric ratios and use them to solve problems
- 3. Use Inverse trigonometric function to solve problems
- 4. Solve problems involving angles of elevation and depression;
- 5. Solve problems using similar triangle

#### **Focused Mathematical Practices**

- 6. MP 2: Reason abstractly and quantitatively
- 7. MP4: Model with mathematics
- 8. MP7: Look for and make sense of structure

Vocabulary: Right Triangle, Trigonometric ratios, slope, sine, cosine, tangent, Hypotenuse, Opposite, Adjacent Fluency

- 9. Ratio
- 10. Similarity
- 11. Slope
- 12. Pythagorean Theorem

|     | Suggested Topic Structure and Pacing |                                                                                 |        |                                                       |  |  |  |  |
|-----|--------------------------------------|---------------------------------------------------------------------------------|--------|-------------------------------------------------------|--|--|--|--|
| Day | Objective(s)<br>covered              | Agile Mind "Blocks"<br>(see Professional Support<br>for further lesson details) | MP     | Additional Notes                                      |  |  |  |  |
| 1   | 1                                    | Block 1                                                                         | 4, 2,7 | Overview  Explore: "Special Right Triangle" Page 1 -9 |  |  |  |  |
| 2   | 2                                    | Block 2                                                                         |        | Explore: "Trigonometric ratio" Page 1 - 8             |  |  |  |  |
| 3   | 2/3                                  | Block 3                                                                         |        | Explore: "Trigonometric ratio" Page 9 - 13            |  |  |  |  |
| 4   | 4/5                                  | Block 5                                                                         |        | Explore: "Indirect Measurement"                       |  |  |  |  |

| Aig | ebra II Unit 4                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | CCSS                                                                                                                                                                                                                                                                | <b>Concepts</b><br>What students will know                                                                                                                                                                           | Skills<br>What students will be able to do                                                                                                                                                                                                                         | Material/Resource                                                                                                                                                                                              |
| 2)  | G.CO.13:. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle G.SRT.C. 8: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*                                                  | Day1 (Concept) Review:  ■ Definition of right triangle, Equilateral triangle, Right Isosceles Triangle and Pythagorean theorem  New  ■ Special Right triangles 45°-45°-90° and 30° – 60° - 90°                       | <ul> <li>Day 1 (Skills)</li> <li>Review</li> <li>Applying Pythagorean theorem to find the missing side</li> <li>New</li> <li>Developing the side lengths of special right triangles.</li> </ul>                                                                    | *Explore:  "Special right triangle" Page 1 -9 Suggested assignment: SAS 2 10 – 11 and Constructed Response 1                                                                                                   |
| 3)  | G.SRT.C. 6: Define trigonometric ratios and solve problems involving right triangles 6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles | <ul> <li>Day2(Concept) Review:         <ul> <li>Concept of similarity</li> <li>Concept of ratios</li> </ul> </li> <li>New         <ul> <li>Definition of trig ratios(Sine cosine and tangent)</li> </ul> </li> </ul> | <ul> <li>Day 2 (Skills) Review</li> <li>Identify similarity</li> <li>Writing ratios</li> <li>New</li> <li>Develop the concept of trig ratios using similarity</li> <li>Write trig ratios of the special right triangles 45°-45°-90° and 30° – 60° - 90°</li> </ul> | *Explore: "Trigonometric ratios" Page 1 -8 Suggested assignment: SAS 3 21 - 22 More practice p6 - 8 Guided Practice P1-6  Note: Skip the definition of unit circle. Students will see this in Algebra II Topic |
| 4)  | G.SRT.C. 8: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*                                                                                                                                                     | Day3Concept) Review:  Definition of Pythagorean Theorem Concept of ratios  New Inverse Trig function                                                                                                                 | <ul> <li>Day 3 (Skills) Review</li> <li>Apply Pythagorean Theorem</li> <li>Writing ratios</li> <li>New</li> <li>Apply the trig ratios to solve the right triangle.</li> <li>Use inverse trig functions to solve problems</li> </ul>                                | *Explore: "Trigonometric ratios" Page 1 -8 Suggested assignment: SAS 3 12 – 13 More practice p1-5                                                                                                              |

Day4(Concept) \*Explore: "Indirect Day 4 (Skills) 5) G.SRT.C. 8: Review: Use trigonometric ratios and Review measurement" Page 1 -9 Special right triangle Apply Pythagorean the Pythagorean Theorem to Suggested Similar triangles Theorem solve right triangles in applied • Writing ratios assignment: problems.\* SAS 4 New New **Guided Practice** • Definition of Angle of • Find missing sides using P 7 – 10 Elevation angle of elevation or More practice depression • Definition of Angle of P 9 -10 Depression Constructed response 3

#### Algebra II Topic 20: Trigonometric Function

Topic Objectives (Note: these are not in 3-part or SMART objective format)

After completing the topic square root functions and equations, students will be able to

- 1. Explore Real world periodic situations
- 2. Draw angles and coterminal angles in standard position
- 3. Find reference angles
- 4. Introduce the circular definition of trigonometric functions and the graphs of y =  $\sin \alpha$  and x =  $\cos \alpha$
- 5. Identify domain, range, symmetry, max min of sine and cosine functions
- 6. Transform sine and cosine function
- 7. Convert degree measure to radian measure

#### **Focused Mathematical Practices**

- MP 4: Model with mathematics
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

#### Vocabulary

Trig ratios, Sine, cosine, tangent, Periodic function, terminal side, coterminal, radian, degree, sinusoidal curve, sinusoidal axis, angle of rotation, periodic function, circular function, trigonometric function, unit circle, Pythagorean identity

#### Fluency

Right triangle trigonometry

Vertical asymptotes

Transformations of functions

Domain and Range

Line and point symmetry

|     | ina point syr            |                                                                                | ested Topic St | tructure and Pacing                                                                                                                                                                                                                                                                                                                 |
|-----|--------------------------|--------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day | Objective(s<br>) covered | Agile Mind "Blocks"<br>(see Professional Spport for<br>further lesson details) | МР             | Additional Notes                                                                                                                                                                                                                                                                                                                    |
| 1   | 1, 2, & 3                | Block 1 and 2                                                                  | 4, 7           | Overview Page 1 - 5 Exploring "Sine and Cosine" page 1 – 8                                                                                                                                                                                                                                                                          |
| 2   | 4, 5                     | Block 3 and 4                                                                  |                | Exploring "Sine and Cosine" Page 9, 10, 11, and 14 (These pages cover the standard F.IF.4.) Note:  DO NOT review point of inflection. Go over max min of the trig functions.  Students will use the Pythagorean identity, but they don't need to prove it (proof will not be assessed in PARCC) Exploring "Transformation page 1 –6 |
| 3   | 6                        | Block 5                                                                        |                | Exploring " radian" and "guided practice" Page 1 - 11                                                                                                                                                                                                                                                                               |

| Algebra II Unit 4                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                    | SKIP tai                                                                                                                                                                                        | ngent                                                                                                                                                                                                                |                                                                                                                                                                       |
| ccss                                                                                                                                                                                                                                                                                                                                                                               | Concepts What students will know                                                                                                                                                                | Skills What students will be able to do                                                                                                                                                                              | Material/Resource                                                                                                                                                     |
| 1) F.TF.5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. 2) F.TF.2: Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           | Day 1 (Skills) Review Trig ratios  New Identifying period function and trigonometric functions Determining midline, Amplitude and period of a sine cosine curve Identify a unit circle, Determine co terminal angles | Material/Resource  Day 1 (Material)  Agile Mind Topic 20 * Overview Pgs. 1 -5 * Exploring "Sine and cosine" Pgs. 1 - 8  Suggested assignment SAS 2 Q6,8 9, and Q17a-d |
| F.IF.B.4: For a function that models a relationship                                                                                                                                                                                                                                                                                                                                | Day 2 (Concept) Review: • Max, min, rate of                                                                                                                                                     | <ul> <li>Determine trig ratios of a circular function</li> <li>Day 2 (Skills) Review</li> <li>Solving systems of linear</li> </ul>                                                                                   | More practice p1, and P2  Day 2 (Material) Agile Mind Topic 20                                                                                                        |
| between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. | change, definition of x intercept and the concept of transformation New:  Transforming a trig function requires same concept as any other function  Phase shift is the same as horizontal shift | equations by substitution  New  Transforming trig function  Find value of the parameters of the sine/cosine function given a graph and write the function                                                            | * Exploring "Sine cosine" Pages: 10,11, and 14 "Transformation" Pages 1-6 Suggested assignment: SAS 2 Q24a-c More practice p3  SAS 3 Q6a-d, 7                         |
| 2) F.IF.B.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                       |

| Ala | ebra | Ш | U | nit | 4 |
|-----|------|---|---|-----|---|
|     |      |   |   |     |   |

| Algebra II Unit 4                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                |                                                                        |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| appropriate domain for the                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                |                                                                        |
| function.                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                |                                                                        |
|                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                |                                                                        |
| angle  1) F.TF.1: Understand radian measure of an angle as the length of the unit circle subtended by the angle. | Day 3 (Concept) Review:  Definition of Arc length Circumference of a circle Unit circle Radius of a circle New: Definition of radian measure | Day 3 (Skills) Review  Setting up proportion and solving proportion Converting different measurement conversion New  Use the definition of radian write the sine and cosine function given a set of parameters | Day 2 (Material) Agile Mind Topic 20 * Exploring "Radians" Pages: 1-11 |

#### **Ideal Math Block**

#### The following outline is the department approved ideal math block for grades 9-12.

- 1) Fluency Practice (5 min) (see focused fluency skills in each curriculum unit plan)
- 2) Do Now (7-10 min)
  - a. Serves as review from last class' or of prerequisite material
  - b. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 3) Starter/Launch (5 min)
  - a. Designed to introduce the lesson
  - b. Uses concrete or pictorial examples
  - c. Attempts to bridge the gap between grade level deficits and rigorous, on grade level content
  - d. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 4) Mini-Lesson (15-20 min)
  - a. Design varies based on content
  - b. May include an investigative approach, direct instruction approach, whole class discussion led approach, etc.
  - c. Includes CFU's
  - d. Anticipates misconceptions and addresses common mistakes
- 5) Class Activity (25-30 min)
  - a. Design varies based on content
  - b. May include partner work, group work/project, experiments, investigations, game based activities, etc.
- 6) Independent Practice (7-10 min)
  - a. Provides students an opportunity to work/think independently
- 7) Closure (5-10 min)
  - a. Connects lesson/activities to big ideas
  - b. Allows students to reflect and summarize what they have learned
  - c. May occur after the activity or independent practice depending on the content and objective
- 8) DOL (5 min)
  - a. Exit slip

#### **MTSS MODEL**

INSTRUCTION (Grades 9 - 12)

Daily Routine:

Mathematical Content or Language Routine

Anchor Task: Anticipate, Monitor, Select, Sequence,

Connect

50 min

Collaborative Work\* Guided Practice

Independent Work (Demonstration of Student Thinking)

TOOLS Manipulatives

RESOURCES Agile Mind

STATION 1:

Focus on current

Grade Level Content

STUDENT EXPLORATION\* Independent or groups of 2-3 Emphasis on MP's 3, 6 (Reasoning and Precision) And MP's 1 & 4 (Problem

TOOLS/RESOURCES Agile Mind Math Journals

Solving and Application)

STATION 2:

Focus on Student Needs

TECH STATION Independent

TOOLS/ RESOURCES Khan Academy Approved Digital Provider Fluency Practice

TEACHER STATION: Focus on Grade Level Content; heavily scaffolded to connect

TARGETED INSTRUCTION 4 - 5 Students

deficiencies

TOOLS/ RESOURCES Agile Homework Manipulatives

5 min

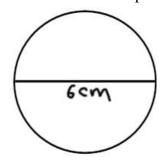
1-2X

25 min

INSTRUCTION

Exit Ticket (Demonstration of Student Thinking)

TOOLS/RESOURCES


Notebooks or Exit Ticket Slips

#### Sample Lesson Plan ccss T.FT.2

Objectives:

- Given the unit circle, students will
  - o Understand the radian measure of an angle and convert degree to radian and vice versa
  - Use radian as a unit to solve problems

Do Now: Purpose is to address the pre-requisites: Geometric properties of circle Find the area and the perimeter of the following circle



Summery: Define:

Radius of a circle: The distance from the center to the circumference of a circle

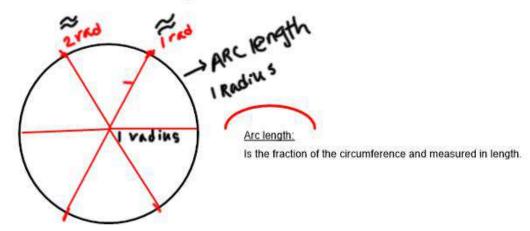
Circumference: Is the distance once around the circle. In other word Perimeter of a circle:

<u>Diameter of a circle</u>: A straight line going through the center of a circle connecting two points on the circumference. In other words, diameter of a circle is two times the radius measure.

Pi: ratio of circumference to diameter

How many degrees does the circle measure?

#### <u>Intro to Radian – Prepare smart board slides</u>


How did people come up with 360 degree? Well it's a human constructed measure. 360 degrees show up in our culture as a full rotation. Ancient calendar is based on 360 days in a year. Ancient astronomers realized that things seem to move 1/360 of the sky per day. Ancient Babylonian liked equilateral triangles so they had a base 60. We use base 10 now. Each equilateral triangle is divided into 60 sections.



Babylonian knew that the perimeter of a hexagon is exactly equal to six times the radius of the circumscribed circle.

### What is radian?

Given a unit circle with a radius of 1 and an arc length that measures 1 radian



About How many radians is the circle above?

About How many radian is the half of the circle above?

What is the value of  $\pi$ 

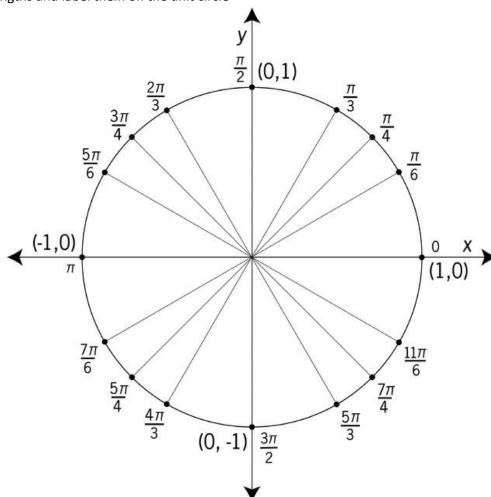
About how many pi radian is the half of the circle?

About how many pi radians are in the above circle?

How many degrees are in a circle?

One pi radian is equal to how many degrees?

### Task

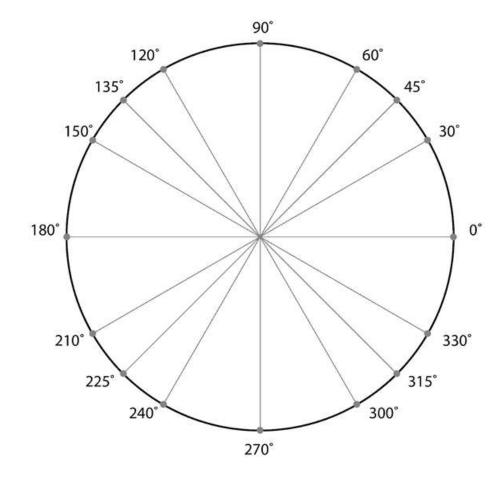

#### Part 1

Convert radians into degrees

Determine the degrees of the following arc lengths and label them on the unit circle



- b)  $\frac{3\pi}{4}$
- c)  $\frac{4\pi}{3}$
- d)  $\frac{11\pi}{6}$

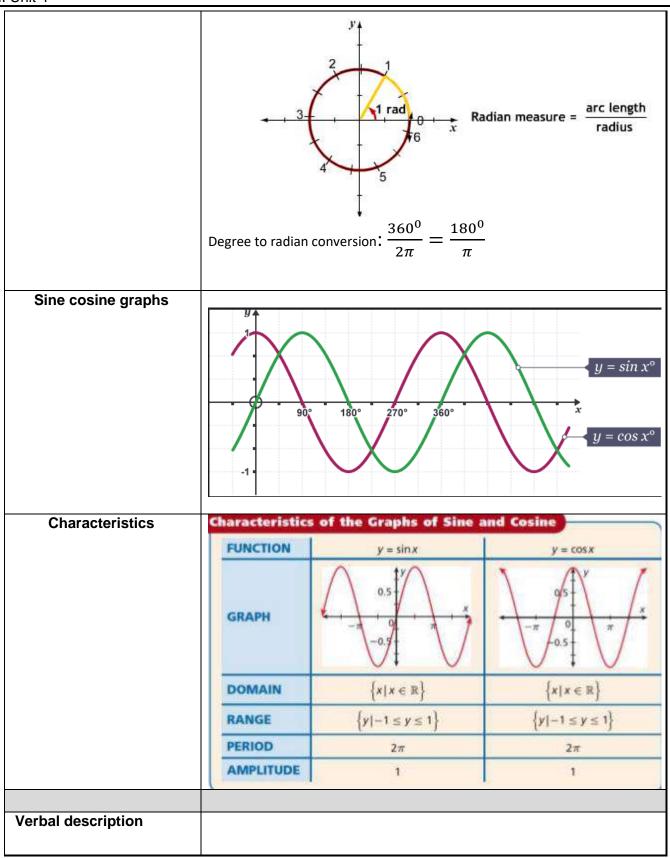



Determine the degrees of the following arc lengths and label them on the unit circle





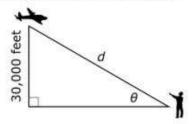
- c) 210°
- d) 315°




### **Supplement Materials**

| Tasks |     |                               |                                     |
|-------|-----|-------------------------------|-------------------------------------|
| CCSS  | SMP | Dropbox location and filename | Link (original task and answer key) |
|       |     |                               |                                     |
|       |     |                               |                                     |
|       |     |                               |                                     |

# Algebra II Unit 4 Multiple Representations


| Trigonometric function          |                                                                                                                                                                                                                                                                                                                                                                                           |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Verbal description              | Trigonometry is based upon ratios of the sides of right triangles  The three trigonometric functions of a right triangle, with an acute angle $\theta$ , are defined by ratios of two sides of the triangle.                                                                                                                                                                              |  |
| The right triangle              | The sides of the right triangle are: the side <b>opposite</b> the acute angle $\theta$ , the side <b>adjacent</b> to the acute angle $\theta$ and the <b>hypotenuse</b> of the right triangle When we are trying to find an <b>angle</b> we use $\sin^{-1}$ , $\cos^{-1}$ , or $\tan^{-1}$ . $\sin\theta = \frac{opp}{hyp}$ $\cos\theta = \frac{adj}{hyp}$ $\tan\theta = \frac{opp}{adj}$ |  |
| Unit circle with radian measure | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                    |  |
| Radian measure                  |                                                                                                                                                                                                                                                                                                                                                                                           |  |



#### **PARCC Sample Item.**

F.INT.1 -2 Given a verbal description of a polynomial, exponential, trigonometric, or logarithmic functional dependence, write an expression for the function and demonstrate various knowledge and skills articulated in the Functions category in relation to this function.

An airplane is flying at an altitude of 30,000 feet. The distance, d, in feet, from an observer on the ground to the plane is a function of the angle of elevation,  $\theta$ , defined as the acute angle between the ground and the line between the observer and the plane, as shown in the figure.



#### Part A

Which equation gives d as a function of  $\theta$ ?

$$^{\odot}$$
 A  $d(\theta) = \frac{30,000}{\sin \theta}$ 

$$\Theta$$
 B.  $d(\theta) = \frac{\sin \theta}{30,000}$ 

$$\bigcirc$$
 C  $d(\theta) = \frac{30,000}{\cos \theta}$ 

$$\bigcirc$$
 D.  $d(\theta) = \frac{\cos \theta}{30,000}$ 

#### Part B

Within the context of the situation described, what is the domain of the function d? Enter the appropriate values, in degrees, in the inequality.

Enter your answer in the boxes.

#### Part C

When the angle of elevation is 75 degrees, what is the distance between the observer and the plane, to the nearest foot?

Enter your answer in the box.



#### Part D

For what value of  $\theta$  will the distance between the observer and the plane be 60,000 feet?

Enter your answer in the box.

F.TF.8: Use the Pythagorean identity  $\sin^2\theta + \cos^2\theta = 1$  to find  $\sin\theta$ ,  $\cos\theta$ , or  $\tan\theta$ , given  $\sin\theta$ ,  $\cos\theta$ , or  $\tan\theta$  and the quadrant of the angle.

Suppose that  $\theta$  is a second quadrant angle and that  $\cos\theta=-\frac{4}{5}$ . What is the value of  $\sin\theta$  to the nearest tenth?

Enter your answer in the box.

| -   | _ |
|-----|---|
| î . |   |
|     |   |
|     |   |
|     |   |

F.INT.3: Solve multi-step contextual word problems with degree of difficulty appropriate to the course, requiring application of course-level knowledge and skills articulated in F-TF.5, F-IF.8, F-IF.7, limited to trigonometric functions.

. The organizers of a community fair set up a small Ferris wheel for young children. The table shows the heights of one of the cars above the ground for different rotations of the wheel.

| Angle of<br>Rotation<br>(radians) | Height<br>above the<br>Ground<br>(feet) |
|-----------------------------------|-----------------------------------------|
| 0                                 | 1                                       |
| π 2                               | 7                                       |
| π                                 | 13                                      |
| $\frac{3\pi}{2}$                  | 7                                       |
| 2π                                | 1                                       |
| $\frac{5\pi}{2}$                  | 7                                       |
| 3π                                | 13                                      |
| $\frac{7\pi}{2}$                  | 7                                       |
| 4π                                | 1                                       |

#### Part A

The function  $h(x)=a \, \sin\!\left(x-\frac{\pi}{2}\right)+b$ , where a and b are constants models the height of the Ferris wheel car at a rotation of x radians.

What are the values of a and b?

$$a = 1; b = 12$$

$$0$$
 B.  $a = 6$ ;  $b = 7$ 

$$0$$
 C.  $a=7$ ;  $b=6$ 

$$0$$
 D.  $a = 12$ ;  $b = 1$ 

#### Part B

Consider the graph of y=h(x) in the xy-coordinate plane. Which statements are true?

Select all that apply.

- A. The amplitude of the graph is 12.
- $\square$  B. The period of the graph is  $2\pi$ .
- $oxed{\square}$  C. The midline of the graph is at y=13.
- $\square$  D. The graph is increasing for  $4\pi < x < 5\pi$ .
- lacksquare E. The graph is decreasing for  $rac{11\pi}{2} < x < rac{13\pi}{2}$ .