Algebra I

SECTION 2.5
PROPERTIES AND MENTAL COMPUTATION

OBJECTIVES: STATE AND APPLY THE COMMUTATIVE, ASSOCIATIVE, DISTRIBUTIVE AND OTHER PROPERTIES.

Warm-up

Evaluate

1.
$$44 + (36 + 32)$$

3.
$$5-(6+2)$$

$$2. \ 3(4+2)$$

Identity Property for Addition

For all real numbers a, a + 0 = a and 0 + a = a

Additive Inverse Property

For every real number a, there is exactly one real number -a such that a + (-a) = 0 and -a + a = 0

Identity Property for Multiplication

For all real numbers a, $a \cdot 1 = a$ and $1 \cdot a = a$

Multiplicative Inverse Property

For every nonzero real number a, there is exactly one number $\frac{1}{a}$ such that

$$a \gamma \frac{1}{a} = 1$$
 and $\frac{1}{a} \gamma a = 1$

The number $\frac{1}{a}$ is called the reciprocal or multiplicative inverse of a.

Properties of Zero

Let a represent any real number

1. The product of any real number and zero is zero.

$$\mathbf{a} \cdot \mathbf{0} = 0$$
 and $0 \cdot \mathbf{a} = 0$

2. Zero divided by any nonzero real number is zero.

$$\frac{0}{a} = 0$$
, where $a \neq 0$

3. Division by zero is undefined (Division by zero is not possible)

Commutative Properties

Commutative Property of Addition

For all real numbers a and b:

$$a + b = b + a$$

Commutative Property of Multiplication

For all real numbers a and b:

$$a \cdot b = b \cdot a$$

Associative Properties

Associative Property of Addition

For all real numbers a, b, and c:

$$(a + b) + c = a + (b + c)$$

Associative Property of Multiplication

For all real numbers a, b, and c:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Distributive Property

The Distributive Property of Multiplication Over Addition and Subtraction

For all real numbers a, b, and c:

$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$

And

$$a(b-c) = ab - ac$$
 and $(b-c)a = ba - ca$

Properties of Equality

For all real numbers a, b, and c:

Reflexive Property

a = a (A number is equal to itself)

Symmetric Property

If a = b, then b = a

Transitive Property

If a = b and b = c, then a = c

Substitution Property

If a = b, then a can be replaced by b and b can be replaced by a

Practice: Name the property illustrated. Be specific.

1.
$$32 + 17 = 17 + 32$$

2.
$$13 \cdot 21 - 13 \cdot 9 = 13(21 - 9)$$

3.
$$6(4.7-2) = 6(4.7) - 6(2)$$

4.
$$4(5x) = (4 \cdot 5)x$$

5.
$$-8.2(2+5.3) = (2+5.3)(-8.2)$$

6.
$$(6-3)5 = 6 \cdot 5 - 3 \cdot 5$$

7.
$$46 + 12 = 12 + 46$$

8.
$$23 + (17 + 34) = (23 + 17) + 34$$

9.
$$4(2.3 + 4.9) = 4(2.3) + 4(4.9)$$

10.
$$6(3x) = (6 \cdot 3)x$$

11.
$$5 \cdot (12 \cdot 4) = 5 \cdot (4 \cdot 12)$$

12.
$$6 \cdot 300 + 6 \cdot 80 = 6(300 + 80)$$