Curriculum Mapping Math – Algebra I 1st Nine Weeks

Brian Cheek, Tara Kinder, Matthew Lung, Maggie Spear - 2020

Module 1 : Number Systems and Solving Linear Equations

Number of School Days: 6 days of instruction, 2 days assessments, total 8 days

Chapter Vocabulary: Rational Number, Irrational Number, Integer, Whole Number, Natural Number, Linear Equation, Ratio, Proportion, Literal Equation, Dimensional Analysis

Code for Indiana Standards: NE=Number Systems and Expressions, L=Linear Equations, Inequalities, and Functions, MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
0-2 Real Numbers	A1.NE.1	Students can classify and use Real Numbers such as Rational, Irrational, Integer, Whole, and Natural.	-Textbook or e-Book Pages P7-P10. -ConnectEd Website	1	Page P10: 1-35 Mid-Chapter Quiz Unit 1 Test
2-3 Solving Multi-Step Eqations	A1.L.1 MP 8	Students can represent real-world problems using linear equations in one variable, including those with rational number coefficients and variables on both sides of the equal sign. Solve them fluently, explaining the process used and justifying the choice of a solution method.	-Textbook or e-Book Pages 95-99 -ConnectEd Website	1	Pages 98-99: 11-52 Mid-Chapter Quiz Unit 1 Test
2-4 Solve Equations with Variables on Both Sides	A1.L.1 MP 1,3,4,7	Students can represent real-world problems using linear equations in one variable, including those with rational number coefficients and variables on both sides of the equal sign. Solve them fluently, explaining the process used and justifying the choice of a solution method.	-Textbook or eBook Pages 101-103 -ConnectEd Website	2	Pages 104-105: 1-41 Mid-Chapter Quiz Unit 1 Test
2-6/0-6 Ratios and Proportions and Percent	A1.L.1 MP1,3,4,7	Students can represent real-world problems using proportions in one variable, including those with variables on both sides of the equal sign. Solve	-Textbook or eBook Pages 115-118 and P20-P21 -ConnectEd Website	1	Pages P21-P22: 1-28 and 118- 119: 1-42 Unit 1 Test

Proportion		them fluently, explaining the process used and justifying the choice of a solution method.			
2-7 Literal Equations and Dimensional Analysis	A1.L.1, A1.L.7 MP 4,6,7	 Students can represent real-world problems using linear equations in one variable, including those with rational number coefficients and variables on both sides of the equal sign. Solve them fluently, explaining the process used and justifying the choice of a solution method. Students can solve linear equations and formulas for a specified variable to highlight a quantity of interest, using the same reasoning as in solving equations. 	Textbook or eBook Pages 122-124 -ConnectEd Website	1	Pages 124-125: 1-28 Unit 1 Test

Module 2 : Relations and Functions

Number of School Days: 4 days of instruction, 2 days assessments, total 6 days

Chapter Vocabulary: Relation, Function, Domain, Range, Function Notation, Independent Variable, Dependent Variable, Intercept, Increasing Function, Decreasing Function, End Behavior

Code for Indiana Standards: F=Functions MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
1-6 Relations	A1.F.1, A1.F.3 MP 1	 -Students can represent relations as sets of ordered pairs, tables, mappings, and graphs. -Students can identify the domain and range of a relation. -Students can identify independent and dependent variables. 	Textbook or eBook Pages 42- 44 ConnectEd Website	1	Pages 45-47: 1-37 Mid-Chapter Quiz Unit 2 Test

1-7 Functions	A1.F.1, A1.F.2 MP 3	-Students understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. Understand that if f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. Understand the graph of f is the graph of the equation $y = f(x)$ with points of the form $(x, f(x))$. -Students can evaluate functions for given elements of its domain, and interpret statements in function notation in terms of a context.	Textbook or eBook Pages 49- 52 ConnectEd Website	2	Pages 53-55: 1-48 Mid-Chapter Quiz Unit 2 Test
1-8 Interpreting Graphs of Functions	A1.F.4 MP 1	Students can describe, qualitatively, the functional relationship between two quantities by analyzing key features of a graph. Sketch a graph that exhibits given key features of a function that has been verbally described, including intercepts, where the function is increasing or decreasing, where the function is positive or negative, and any relative maximum or minimum values, Identify the independent and dependent variables.	Textbook or eBook Pages 58- 61 ConnectEd Website	1	Pages 61-63: 1-19 Unit 2 Test

Module 3 : Linear Functions

Number of School Days: 4 days of instruction, 2 days assessments, total 6 days

Chapter Vocabulary: Linear Equation, Standard Form, Constant, x-intercept, y-intercept, Linear Function, Root, Rate of Change, Slope

Code for Indiana Standards: L=Linear Equations, Inequalities, and Functions, MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
3-1 Graphing Linear Functions	A1.L.3, A1.1.4, A1.L.7 MP 8	-Students can represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and other given information (e.g., from a given point on a line and the slope of the line). -Students can represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and	Textbook or eBook Pages 143-146 ConnectEd Website	1	Pages 147-149: 1-57 Mid-Chapter Quiz Unit 3 Test

		intercepts. -Students can solve linear equations and formulas for a specified variable to highlight a quantity of interest, using the same reasoning as in solving equations.			
3-2 Zeros of Linear Functions	A1.L.3, A1.L.4 MP 4	-Students can represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and other given information (e.g., from a given point on a line and the slope of the line). -Students can represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and intercepts.	Textbook or eBook Pages 151-153 ConnectEd Website	1	Pages 154-155: 1-44 Mid-Chapter Quiz Unit 3 Test
3-3 Rate of Change and Slope	A1.L.4 MP 2	-Students can represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and intercepts.	Textbook or eBook Pages 160-164 ConnectEd Website	1	Pages 165-167: 1-47 Unit 3 Test
3-4 Slope Intercept Form	A1.L.3, A1.l.4, A1.L.7 MP 2,8	-Students can represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and other given information (e.g., from a given point on a line and the slope of the line). -Students can represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and intercepts. -Students can solve linear equations and formulas for a specified variable to highlight a quantity of interest, using the same reasoning as in solving equations.	Textbook or eBook Pages 171-174 ConnectEd Website	1	Pages 174-177: 1-61 Unit 3 Test

Curriculum Mapping Math – Algebra I 2nd Nine Weeks

Module 4 : Equations of Linear Functions	
--	--

Number of School Days: 8 days of instruction, 2 days assessments, total 10 days

Chapter Vocabulary: Slope-Intercept Form, Point-Slope Form, Standard Form, Parallel Lines, Perpendicular Lines, Bivariate Data, Scatter Plot, Line of Fit, Linear Extrapolation, Linear Interpolation, Linear Regression, Correlation Coefficient

Code for Indiana Standards: L=Linear Equations, Inequalities, and Functions, DS=Data Analysis and Statistics MP=Mathematical Practice

Lesson	Indiana Standard (s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
4-1 Writing Equations in Slope-Intercept Form	A1.L.3, A1.L.4 MP 3,6	-Students can represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and other given information (e.g., from a given point on a line and the slope of the line). -Students can represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and intercepts.	Textbook or eBook Pages 225-227 ConnectEd Website	1	Pages 228-230: 1-46 Mid-Chapter Quiz Unit 4 Test
4-2 Writing Equations in Standard and Point-Slope Forms	A1.L.3, A1.L.4, A1.L.5 MP 1,4,7	Students can translate among equivalent forms of equations for linear functions, including slope- intercept, point-slope, and standard. Recognize that different forms reveal more or less information about a given situation.	Textbook or eBook Pages 232-235 ConnectEd Website	2	Pages 235-237: 1-41 Mid-Chapter Quiz Unit 4 Test
4-3 Parallel and Perpendicular Lines	A1.L.3, A1.L.4, A1.L.5 MP 5	Students can find the equation of a line, passing through a given point, that is parallel or perpendicular to a given line	Textbook or eBook Pages 239-242 ConnectEd Website	2	Pages 243-244: 1-43 Mid-Chapter Quiz Unit 4 Test
4-4 Scatter Plots and Lines of Fit	A1.L.4, A1.L.5 MP 1,4	Students can represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and	Textbook or eBook Pages 247-249 ConnectEd Website	1	Pages 250-252: 1-11 Unit 4 Test

		intercepts. -Students can translate among equivalent forms of equations for linear functions, including slope- intercept, point-slope, and standard. Recognize that different forms reveal more or less information about a given situation.			
4-5 Correlation and Causation	A1.DS.4 MP 2,3,8	Students can describe the differences between correlation and causation.	Textbook or eBook Pages 254-256 ConnectEd Website	1	Pages 256-257: 1-15 Unit 4 Test
4-6 Regression	A1.DS.3 MP 4	Students can use technology to find a linear function that models a relationship between two quantitative variables to make predictions, and interpret the slope and y-intercept. Using technology, compute and interpret the correlation coefficient.	Textbook or eBook Pages 259-262 ConnectEd Website	1	Pages 263-264: 1,2,4-6,8,10 Unit 4 Test

Module 5 : Linear Inequalities

Number of School Days: 4 days of instruction, 2 days assessments, total 6 days

Chapter Vocabulary: Inequality, Compound Inequality, Intersection, Union, Half Plane

Code for Indiana Standards: L=Linear Equations, Inequalities, and Functions MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
5-3 Solving Multi-Step Inequalities	A1.L.1	Students can solve linear inequalities involving more than one operation and that involve the Distributive Property.	Textbook or eBook Pages 302-308 ConnectEd Website	1	"Check Your Understanding" p. 304, Mid-Chapter Quiz p. 308
5-4 Compound Inequalities	A1.L.2	Students can solve compound inequalities involving the word "and" or "or" and graph their solution sets.	Textbook or eBook Pages 310-314 ConnectEd Website	1	"Check Your Understanding" p. 312
5-6 Graphing Inequalities in Two Variables	A1.L.6	Students can graph linear inequalities on the coordinate plane and solve them using their graphs.	Textbook or eBook Pages 321-326 ConnectEd Website Extend 5-6 p. 327	2	"Check Your Understanding" p. 324 Unit 5 Test

Curriculum Mapping Math – Algebra I 3^{rd Nine Weeks}

Module 6 : Systems of Linear Equations and Inequalities	Number of School Days: 7 days of instruction, 2 days assessments, total 9 days			
Chapter Vocabulary: System of Equations, Substitution, Elimination, System of Inequalities				
Code for Indiana Standards: SEI=Systems of Linear Equations and Inequalities MP=Mathematical Practice				

Lesson	Indiana Standard (s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
6-1 Graphing Systems of Equations	A1.SEI.1, A1.SEI.3 MP 3,8	-Students understand the relationship between a solution of a system of two linear equations in two variables and the graphs of the corresponding lines. Solve pairs of linear equations in two variables by graphing; approximate solutions when the coordinates of the solution are non-integer numbers. -Students can write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.	Textbook or eBook Pages 339-341 ConnectEd Website	1	Pages 342-343: 1-40 Mid-Chapter Quiz Unit 6 Test
6-2 Substitution	A1.SEI.2, A1.SEI.3 MP 2	-Students can verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with no solution and infinitely many solutions. Solve systems of two linear equations algebraically using the substitution method. -Students can write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.	Textbook or eBook Pages 348-350 ConnectEd Website	2	Pages 351-352: 1-26 Mid-Chapter Quiz Unit 6 Test
6-3 Elimination with Addition	A1.SEI.2, A1.SEI.3	-Students can verify that, given a system of two equations in two variables, replacing one equation	Textbook or eBook Pages 354-357	1	Pages 357-359: 1-33 Mid-Chapter Quiz

and Subtraction	MP 7	by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with no solution and infinitely many solutions. Solve systems of two linear equations algebraically using the elimination method. -Students can write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.	ConnectEd Website		Unit 6 Test
6-4 Elimination with Multiplication	A1.SEI.2, A1.SEI.3 MP 1	-Students can verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with no solution and infinitely many solutions. Solve systems of two linear equations algebraically using the elimination method. -Students can write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.	Textbook or eBook Pages 361-363 ConnectEd Website	1	Pages 363-365:1-28 Unit 6 Test
6-5 Applying Systems	A1.SEI.1, A1.SEI.2, A1.SEI.3 MP 2,4	-Students understand the relationship between a solution of a system of two linear equations in two variables and the graphs of the corresponding lines. -Students can solve pairs of linear equations in two variables by graphing; approximate solutions when the coordinates of the solution are non-integer numbers. -Students can verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with no solution and infinitely many solutions. Solve systems of two linear equations algebraically using elimination and substitution methods. -Students can write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.	Textbook or eBook Pages 368-370 ConnectEd Website	1	Pages 371-372:1-22 Unit 6 Test

6-6 Systems of Inequalities	A1.SEI.4 MP 6,7	-Students can represent real-world problems using a system of two linear inequalities in two variables. Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes with and without technology. Interpret the solution set and determine whether it is reasonable	Textbook or eBook Pages 376-377 ConnectEd Website	1	Pages 378-379:1-37 Unit 6 Test
--------------------------------	--------------------	--	---	---	-----------------------------------

Module 7 : Exponents and Exponential Functions

Number of School Days: 4 days of instruction, 2 days assessments, total 6 days

Chapter Vocabulary: monomial, zero exponent, exponential function, exponential growth, exponential decay, compound interest

Code for Indiana Standards: NE= Real Numbers and Expressions QE=Quadratic and Exponential Equations and Functions MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
7-1 Multiplication Properties of Exponents	A1.NE.2, MP 8	Students can simplify algebraic rational expressions, with numerators and denominators containing monomial bases with integer exponents, to equivalent forms.	Textbook or eBook Pages 395-398 ConnectEd Website	1	Pages 398-400; 1-63 Mid-Chapter Quiz Unit 7 Test
7-2 Division Properties of Exponents	A1.NE.2, MP 2	Students can simplify algebraic rational expressions, with numerators and denominators containing monomial bases with integer exponents, to equivalent forms.	Textbook or eBook Pages 402-406 ConnectEd Website	1	Pages 406-408; 1-60 Mid-Chapter Quiz Unit 7 Test
7-5 Exponential Functions	A1.QE.1, A1.QE.2, A1.QE.6, MP 1	-Students can distinguish between situations that can be modeled with linear functions and with exponential functions. Understand that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. Compare linear functions and exponential functions that model real-world situations using tables, graphs, and equations. -Students can represent real-world and other mathematical problems	Textbook or eBook Pages 430-432 ConnectEd Website	1	Pages 433-434; 1-40 Unit 7 Test

		that can be modeled with simple exponential functions using tables, graphs, and equations of the form y = abx (for integer values of $x > 1$, rational values of $b > 0$ and $b \neq 1$) with and without technology; interpret the values of a and b. -Students can graph exponential and quadratic functions with and without technology. Identify and describe key features, such as zeros, lines of symmetry, and extreme values in real-world and other mathematical problems involving quadratic functions with and without technology; interpret the results in the real-world contexts.			
7-7 Writing Exponential Functions (Growth/Deca y/Compound Int.)	A1.QE.1, A1.QE.2	 Students can distinguish between situations that can be modeled with linear functions and with exponential functions. Understand that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. Compare linear functions and exponential functions that model real-world situations using tables, graphs, and equations. Students can represent real-world and other mathematical problems that can be modeled with simple exponential functions using tables, graphs, and equations of the form y = abx (for integer values of x > 1, rational values of b > 0 and b ≠ 1) with and without technology; interpret the values of a and b. 	Textbook or eBook Pages 438-442 ConnectEd Website	1	Pages 443-446; 1-63 Unit 7 Test

Module 8 : Rational Exponents and Radical Expressions

Number of School Days: 6 days of instruction, 1 days assessments, total 7 days

Chapter Vocabulary: rational exponent, nth root, radical expression, rationalizing the denominator, conjugate

Code for Indiana Standards: NE= Real Numbers and Expressions MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
7-3 Rational Exponents	A1.NE.3, MP 5	Students can simplify algebraic rational expressions, with numerators and denominators containing monomial bases with integer exponents, to equivalent forms.	Textbook or eBook Pages 410-413 ConnectEd Website	1	Pages 414-416; 1-88 Unit 8 Test
7-4 Radical Expressions	A1.NE.3, MP 6, 7, 8	Students can simplify algebraic rational expressions, with numerators and denominators containing monomial bases with integer exponents, to equivalent forms.	Textbook or eBook Pages 419-424 ConnectEd Website	5	Pages 424-426; 1-74 Unit 8 Test

Curriculum Mapping Math – Algebra I 4th Nine Weeks

Module 9 : Polynomials

Number of School Days: 7 days of instruction, 2 days assessments, total 9 days

Chapter Vocabulary: polynomial, binomial, trinomial, degree of a monomial/polynomial, standard form, leading coefficient, quadratic expression, factoring, factoring by grouping, prime polynomial, difference of two squares, perfect square trinomial

Code for Indiana Standards: NE= Real Numbers and Expressions MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
8-1 Adding and Subtracting Polynomials	A1.NE.5, MP 3	Students can add, subtract, and multiply polynomials. Divide polynomials by monomials.	Textbook or eBook Pages 491-493 ConnectEd Website	1	Pages 494-496; 1-60 Mid-Chapter Quiz Unit 9 Test
8-2 Multiplying a Polynomial by a Monomial	A1.NE.5, MP 3,8	Students can add, subtract, and multiply polynomials. Divide polynomials by monomials.	Textbook or eBook Pages 498-500 ConnectEd Website	1	Pages 500-502; 1-44 Mid- Chapter Quiz Unit 9 Test
8-3 Multiplying Polynomials	A1.NE.5, MP 6,8	Students can add, subtract, and multiply polynomials. Divide polynomials by monomials.	Textbook or eBook Pages 506-508 ConnectEd Website	1	Pages 509-510; 1-44 Mid-Chapter Quiz Unit 9 Test
8-4 Special Products	A1.NE.5, MP 8	Students can add, subtract, and multiply polynomials. Divide polynomials by monomials.	Textbook or eBook Pages 512-514 ConnectEd Website	1	Pages 514-516; 1-56 Mid-Chapter Quiz Unit 9 Test
8-5 Using the Distributive Property	A1.NE.4, MP 2	Students can factor quadratic expressions (including the difference of two squares, perfect square trinomials and other quadratic expressions).	Textbook or eBook Pages 520-523 ConnectEd Website	1	Pages 523-525; 1-51 Unit 9 Test

8-6 Factoring Quadratic Trinomials	A1.NE.4, MP 8	Students can factor quadratic expressions (including the difference of two squares, perfect square trinomials and other quadratic expressions).	Textbook or eBook Pages 531-535 ConnectEd Website	1	Pages 536-537; 1-43 Unit 9 Test
8-7 Factoring Special Products	A1.NE.4, MP 1, 4, 8	Students can factor quadratic expressions (including the difference of two squares, perfect square trinomials and other quadratic expressions).	Textbook or eBook Pages 539-542 ConnectEd Website	1	Pages 543-544; 1-46 Unit 9 Test

Module 10 : Quadratic Functions and EquationsNumber of School Days: 5 days of instruction, 2 days assessments, total 7 daysChapter Vocabulary: quadratic function, parabola, axis of symmetry, vertex, minimum, maximum, quadratic equation, completing the square, quadratic formula, discriminant

Code for Indiana Standards: QE= Quadratic and Exponential Equations and Functions MP=Mathematical Practice

Lesson	Indiana Standard(s)	Learning Targets and "I CAN" Statements	Resources/Activities	Pacing (in school days)	Assessments
9-1 Graphing Quadratic Functions	A1.QE.6, MP 2	Students can graph exponential and quadratic functions with and without technology. Identify and describe key features, such as zeros, lines of symmetry, and extreme values in real-world and other mathematical problems involving quadratic functions with and without technology; interpret the results in the real-world contexts	Textbook or eBook Pages 559-564 ConnectEd Website	1	Pages 565-568; 1-67 Mid-Chapter Quiz Unit 10 Test
9-3 Solving Quadratic Equations by Graphing	A1.QE.6, MP 3, 5	Students can graph exponential and quadratic functions with and without technology. Identify and describe key features, such as zeros, lines of symmetry, and extreme values in real-world and other mathematical problems involving quadratic functions with and without technology; interpret the results in the real-world contexts	Textbook or eBook Pages 580-583 ConnectEd Website	1	Pages 584-585; 1-41 Mid- Chapter Quiz Unit 10 Test
9-4 Solving Quadratic	A1.QE.4, MP 1, 6	Students can solve quadratic equations in one variable by inspection (e.g., for $x2 = 49$), finding	Textbook or eBook Pages 588-592	1	Pages 592-594; 1-49 Mid- Chapter Quiz

Equations by Factoring		square roots, using the quadratic formula, and factoring, as appropriate to the initial form of the equation.	ConnectEd Website		Unit 10 Test
9-5 Solving Quadratic Equations by Completing the Square	A1.QE.3, MP 1, 2, 4, 7	Students can use area models to develop the concept of completing the square to solve quadratic equations. Explore the relationship between completing the square and the quadratic formula.	Textbook or eBook Pages 596-599 ConnectEd Website	1	Pages 599-601; 1-41 Mid-Chapter Quiz Unit 10 Test
9-6 Solving Quadratic Equations by Using the Quadratic Formula	A1.QE.4, MP 6	Students can solve quadratic equations in one variable by inspection (e.g., for $x2 = 49$), finding square roots, using the quadratic formula, and factoring, as appropriate to the initial form of the equation.	Textbook or eBook Pages 606-610 ConnectEd Website	1	Pages 611-612; 1-50 Unit 10 Test