# Marion High School Student Instructional Packet Assignments September 8<sup>th</sup> - September 21<sup>st</sup>

| Student:  Period: 4th  Teacher(s): Circle your teacher's name, if more than one teacher is listed below. | Student: Please put your name and class period on this sheet.                                                                                                     |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teacher 1: Mr. A. McIntosh Email: amcintosh@marion.k12.sc.us  Teacher 2: Email:  Teacher 3: Email:       | You will need to return this sheet and any assignments attached.                                                                                                  |
| Teacher 4:<br>Email:                                                                                     | Circle your teacher's name                                                                                                                                        |
| Course: ALGEBRA 3  Teacher Planning Period: 2  School Number: 843-423-2571                               |                                                                                                                                                                   |
|                                                                                                          | Tuesday – September 8 <sup>th</sup> Parents and students will:  Read and sign Parents Letter  Peruse Classroom rules/procedures  View/discuss Syllabus  Check-ins |
| Wednesday – September 9 <sup>th</sup> Diagnostic Test Question & Answer                                  | Thursday – September 10 <sup>th</sup> Literal Equations lesson & Activity                                                                                         |

# Marion High School Student Instructional Packet Assignments September 8<sup>th</sup> - September 21<sup>st</sup>

| Friday — September 11 <sup>th</sup>             | Monday – September 14 <sup>th</sup>    |
|-------------------------------------------------|----------------------------------------|
| Literal Equations                               | Literal Equations Quiz                 |
| Tuesday – September 15 <sup>™</sup>             | Wednesday – September 16 <sup>th</sup> |
| Inverse Functions Lesson, examples and practice | Inverse Functions Notation             |
| Thursday – September 17 <sup>th</sup>           | Friday- September 18 <sup>th</sup>     |
| Inverse Functions Graphs                        | Inverse Functions Quiz                 |
| Monday – September 21 <sup>st</sup>             |                                        |
| Intro to Functions Practice/Make-up Quiz        |                                        |
|                                                 |                                        |

## **DAY 2: Sept 9, 2020**

## Algebra 3 - Diagnostic Test

1. Solve for x:  $\frac{25x-1}{7} = 2x + 3$ 

2. Find the values of x that satisfy the equation:  $2x^2 + 9x - 5 = 0$ 

- 3. Simplify each of the following radical expressions:
  - a)  $\sqrt{10}$

b)  $\sqrt[3]{54}$ 

c)  $\sqrt[4]{\frac{16}{81}}$ 

4. Find the solution point for the system of equations:

$$\begin{cases} 4x - y = 9 \\ 2x + 3y = 1 \end{cases}$$

5. Solve each of the following for the variable indicated:

a) 
$$P = 5q + cq$$
, for  $q$ 

b) 
$$\frac{x}{4x-3y} = 3$$
, for y

6. Solve for x in each of the following:

a)



b)



#### **DAY 3: SEPT 10, 2020**

#### **REVIEW TOPIC: Literal Equations**

#### **CONCEPTS**

- 1. To solve a literal equation you must ISOLATE THE TARGET VARIABLE
- 2. If the variable is distributed among terms on either sides, COLLECT all terms having that variable on the SAME SIDE by SWITCHING SIDES; remember to CHANGE THE SIGNS AS WELL.

Example: Solve 
$$3xy - 4 = 2x + 7y$$

By switching sides we get: 
$$3xy - 7y = 2x + 4$$

3. If the variable is distributed, FACTOR IT OUT as shown below:

$$y(3x-7)=2x+4$$

4. We the DIVIDE both sides by the unwanted factor because it is MULTIPLYING or target variable:

$$y\frac{(3x-7)}{(3x-7)} = \frac{(2x+4)}{(3x-7)}$$

The unwanted factor will cancel and your final equation will be:

$$y = \frac{2x+4}{3x-7}$$

 Remember to GET YOU VARIABLE OUT OF PARENTHESES BY DISTRIBUTING when necessary.

## DAY 2 ACTIVITY

Solve each of the following equations for the variable shown:

1. Solve: 
$$3xy - 2yz = 12 - 5z$$

2. Solve: 
$$\frac{12xy^2-3}{4} = x$$

3. Solve: 
$$2pqr - 3p = pq + 2$$

for [q]

4. 
$$v^2 = u^2 - 2as$$

for [s]

$$5. \quad S = 2(lw + lh + wh)$$

for [w]

6. Solve: 
$$A = p(1 + rt)$$

for [t]

7. Solve: 
$$S = R - rR$$

for [R] = "

8. Solve: 
$$A = S(1 - DN)$$

for [N]

#### DAY 4: SEPT 11, 2020

**REVIEW TOPIC: Literal Equations** 

#### **CONCEPT:**

To eliminate all DENOMINATORS by MULTIPLY BY THE LOWEST COMMON MULTIPLE (LCM)

Example: Given: 
$$\frac{1}{2} - \frac{2}{x} = \frac{3}{y} + \frac{4}{z}$$

The lowest Common Multiple (LCM) of the denominator will be 2xyz

Therefore multiplying by 2xyz will give: 
$$\frac{2xyz}{2} - \frac{4xyz}{x} = \frac{6xyz}{y} + \frac{8xyz}{z}$$

After cancelling like terms we get: 
$$xyz - 4yz = 6xz + 8xy$$

$$xyz - 4yz = 6xz + 8xy$$

You can then switch sides, factor and solve as required as was done on day1.

#### **DAY 3 ACTIVITY**

| 1. $A = \frac{a+b+c+d}{4} \qquad \text{for } [c]$ | $2.  m = \frac{y_2 - y_1}{x_2 - x_1}$ | for[y <sub>2</sub> ] |
|---------------------------------------------------|---------------------------------------|----------------------|
|                                                   |                                       |                      |
|                                                   |                                       |                      |
|                                                   |                                       |                      |
|                                                   |                                       |                      |
|                                                   |                                       |                      |

| 3. $\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$ for [f]     | 4. | $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ | for [R] |
|----------------------------------------------------------|----|-----------------------------------------------|---------|
| 5. $\frac{P_1V_2}{T_1} = \frac{P_2V_2}{T_2}$ for $[T_1]$ |    | $V = \frac{1}{3}\pi h^2 (3r-h)$               | for [r] |

## DAY 5: SEPT 14, 2020

**REVIEW TOPIC: Literal Equations** 

Solve each of the following equations for the variable indicated:

1. 
$$A = 2(L + W)$$

[W]

2. 
$$ax + by = c$$

[y]

3. 
$$2(a-c) = 4a$$

[a]

4. 
$$cx-d = a(x-y)$$

[y]

$$5. \frac{x-8a}{6} = 3a-2x$$

[x]

$$6. \quad \frac{x}{4x-3y} = 3$$

[y]

7. 
$$5w = \frac{1}{4}(3v - 4u)$$

[u]

$$8. \quad A = 2\pi r^2 + 2\pi rh$$

 $[\pi]$ 

9. 
$$\frac{2}{7z} + \frac{2}{3x} = \frac{4}{w}$$

[w]

10.  $UV^3 - W = V^3 + UW$  [V] Hint! Collect, factor the Find cube root of both sides!

11. 
$$a\sqrt{x} + b = \sqrt{x} + c$$

[x] HINT! Collect, Factor, Divide then Square both sides.

#### **DAY 6 SEPT 15, 2020**

#### **TOPIC: INVERSE FUNCTIONS**

- $\triangleright$  In the graph below, the line that bisects the x and y axes is the line y = x
- The point (2, 5) is standing in front of the mirror (y = x) and its reflection is the point (5, 2)
- We say the (5, 2) is the inverse of (2, 5) also (2, 5) is the inverse of (5, 2). The inverse of a point is found simply by swapping x and y values.

# Reflections over the line y = x

When we reflect a point in the x-y plane over the line y = x, the image has the x- and y-coordinates switched.

Here, (2, 5) and (5, 2) are reflected images of each other.



- > The set of X values called "Domain", the set of Y values is the "Range"
- > You obtain the inverse of any point, shape or equation by swapping x and y values.

## **EXAMPLE 1**

Find the inverse R' of the relation  $R = \{(2, 1), (3, -1), (4, 7), (5, 0)\}$ 

**SOLUTION:** 
$$R' = \{(1, 2), (-1, 3), (7, 4), (0, 5)\}$$

#### NOTICE

- 1. The inverse of the set of points was found by swapping x and y values
- 2. Since the relation is R we denoted the inverse  $R^{\prime}$

### **EXAMPLE 2**

Find the inverse of the linear equation y = 2x + 3

#### SOLUTION

STEP 1: Exchange (swap) x and y.

This gives us: x = 2y + 3

STEP 2: Solve for y.

By using our skills in solving literal equations we get:  $y = \frac{x-3}{2}$ 

ightharpoonup The inverse of y = 2x + 3 is  $y = \frac{x-3}{2}$ 

#### REVIEW

To find the inverse of an equation,

- 1. Swap x and y
- 2. Then solve for y.
- 3. The given equation is the OBJECT, the inverse is the IMAGE, and the mirror is the line y = x

## **ACTIVITY**

Find the inverse of each of the following

| 1. | If $Z = \{(-1, 2), (0, 7), (3, -2), (4, 5)\}$ |
|----|-----------------------------------------------|
|    | Find the inverse $Z'$                         |

2. y = 3x - 1

3. 
$$y = \frac{4x-1}{2}$$

4.  $y = x^3 - 17$ 

## **DAY 7 SEPT 17, 2020**

### NOTATION!

If a function is denoted f(x) then its inverse is denoted  $f^{-1}(x)$ 

## **EXAMPLE 1**

Find the inverse of the function  $f(x) = \frac{2x}{7} + 3$ 

## Solution

STEP 1: Replace f(x) with y

Hence we write 
$$y = \frac{2x}{7} + 3$$

$$y = \frac{2x}{7} + 3$$

STEP 2: Swap x and y

The result is 
$$x = \frac{2y}{7} + 3$$

Use you skills in solving literal equations! STEP 3: Solve for y

The result is 
$$y = \frac{7x-21}{2}$$

STEP 4: Replace y with  $f^{-1}(x)$ 

The inverse function is 
$$f^{-1}(x) = \frac{7x-21}{2}$$
 Answer

Hence, the inverse of 
$$f(x) = \frac{2x}{7} + 3$$
 is  $f^{-1}(x) = \frac{7x - 21}{2}$ 

$$f^{-1}(x) = \frac{7x - 21}{2}$$

## **ACTIVITY**

Find the inverse for each of the following functions by following the steps shown above.

| 1. | f(x) | _ | $\frac{3x-5}{2}$ |
|----|------|---|------------------|

2. 
$$g(x) = \frac{\sqrt{2x}}{3} + 5$$

$$3. \quad h(x) = \frac{1}{x+5}$$

4. 
$$k(x) = \frac{x+1}{x-1}$$

## **DAY 8 SEPT 19, 2020**

RECALL! The inverse of a point is found by swapping the x and y coordinates.

For example: (2, 1) is the inverse of (1, 2) also (-3, 7) is the inverse of (7, -3)

> Take some time to study the examples of graphs and their inverses shown below, then do the activity that follows.









## **ACTVITY**

In each of the following graphs, plot the inverse of each point that can be identified and hence draw the respective inverse.

Remember to draw the mirror line y = x for each graph.





1.



4.



# DAY 10, SEPT 21, 2020 - QUIZ

1. Find the inverse of

a) 
$$y = 4 - 3x$$

b) 
$$y = \frac{2x-1}{3} - 6$$

c) 
$$y = (7x + 1)^2$$

d) 
$$y = \frac{\sqrt{5x}}{2} - 3$$

e) 
$$y = \frac{x-2}{x+3}$$

2. Draw the inverse for the shape shown below



3. Given that  $f(x) = \sqrt[3]{x} - 2$  find the inverse function  $f^{-1}(x)$