Tier 2 Algebra 2 Unit Plan

Unit 4: Radical Functions and Rational Exponents

ORANGE PUBLIC SCHOOLS 2015 - 2016 OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF MATHEMATICS

Algebra 2 Unit 4 **Contents**

Unit Overview	2
Calendar (Honors)	3
Scope and Sequence	4
Ideal Math Block	14
Sample Lesson Plan	18
Supplemental Material	23
Multiple Representations	24
Unit Assessment Question Bank: (See OHS Dropbox file: Algebra 2 U3 Question Bank)	28
Additional Resources	28
From pearsonsuccessnet.org	28
Find the errors	28
Enrichment	28
Re-teaching	28
Activities, games, and puzzles	28

Algebra 2 Unit 4 **Unit Overview**

Unit 4: Radical Functions and Rational Exponents						
Essenti	al Questions					
\succ	To simplify the nth root of an expression, what must be true about the expression?					
\succ	When you square each side of an equation, is the resulting equation equivalent to the original?					
\succ	How are a function and its inverse function related?					
Endurii	ng Understandings					
	Corresponding to every power, there is a root. For example, just as there are squares (second					
powers), there are square roots. Just as there are cubes (third powers), there are cube roots, and						
	so on.					
	If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$					
	You can combine like radicals using properties of real numbers.					
	You can write a radical expression in an equivalent form using a fractional (rational) exponent					
instead of a radical sign.						
	Solving a square root equation may require that you square each side of the equation. This can					
	introduce extraneous solutions.					
	on Core State Standards					
	A.CED.4: Create equations that describe number or relationships.					
	A.SSE.2: Use the structure of an expression to identify ways to rewrite it.					
	A.SSE.3c: Use the properties of exponents to transform expressions for exponential functions.					
	A.REI.2: Solve simple rational and radical equations in one variable, and give examples showing					
	how extraneous solution may arise.					
	F.BF.1.b: combine standard function types using arithmetic operations.					
	F.BF.4.a: Find inverse functions. Solve an equation of the form $f(x)=c$ for a simple function f that					
	has an inverse and write an expression for the inverse.					
	N.RN.1: Explain how the definition of the meaning of rational exponents follows from extending					
	the properties of integer exponents to those values, allowing for a notation for radicals in					
	terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 4 because we want $(5^{1/3})^3 = 5^{(1/3)^3}$ to hold, so $(5^{1/3})^3$ must equal 5.					
	N.RN.2: Rewrite expressions involving radicals and rational exponents using the properties of					
	exponents.					
NA	: Major Content S: Supporting Content A : Additional Content					
	- Major content A. Adultonal content					

Algebra 2 Unit 4 **Calendar (Honors)**

	March 2016							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
		3/1	3/2	3/3	3/4	3/5		
3/6	3/7	3/8	3/9	3/10	3/11	3/12		
3/13	3/14	3/15	3/16	3/17	3/18	3/19		
3/20	3/21	3/22	3/23	3/24	3/25 School Closed	3/26		
		F	ebruary 2015					
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
3/27	3/28	3/29	3/30	3/31	4/1	4/2		
4/3	4/4	4/5	4/6	4/7	4/8	4/9		

Algebra 2 Unit 4 Scope and Sequence

Overview					
Lesson	Торіс	Suggesting Pacing and Dates			
1	Roots and Radical Expressions 2 days				
2	Multiplying and Dividing Radical Expressions 2 days				
3	Binomial Radical Expressions	3days			
4	Rational Exponents	2 days			
5	Solving Square Root and Other Radical Equations	3 days			
6	Function Operations	2 days			
7	Inverse Relation and Functions	2 days			

Algebra 2 Unit 4 Assessment Framework

Assessment	CCSS	Estimated Time	Format	Graded
Diagnostic/Readiness Assessment (Beginning of Unit)		½ Block	Individual	No
Assessment Check Up 1 (After Lesson 3)	A.SSE.2, N.RN.1, N.RN.2	½ Block	Individual	Yes
Performance (Critical Area) Task Radical Equations	A.REI.2, A.CED.4	1/2 Block	Individual	Yes
Check up 2 (After Lesson 6)	N.RN.2, N.RN.1, A.REI.2, A.SSE.3c, A.CED.4, F.BF.4.a, F.BF.4.c	½ Block	Individual	Yes
Performance (Modeling)Task Who wins the Race?	A-REI.2,	1 Block	Individual	Yes
Unit 4 Assessment	A.SSE.2, N.RN.2, N.RN.1, A.REI.2, A.CED.4,F.BF.1 _b , F.BF.4. _a ,	1 Block	Individual	Yes
Others				

Algebra 2 Unit 4 Lesson Analysis

Lesson 1: Roots and Radical Expressions

Objective

• Using the *n*th Roots of *n*th Powers Property, SWBAT find *n*th roots, ASB correctly answering _____ exit slip questions.

Focused Mathematical Practices

- MP1: Make sense of problems and persevere in solving them
- MP2: Reason abstractly and quantitatively
- MP3: Construct viable arguments and critique the reasoning of others
- MP7: Look for and make use of structure

Vocabulary: nth root, principal root, radicand, index, cube root, radical expression

Common Misconceptions:

- Determining roots corresponding to every real power students may think that the root is always a real number. Students must understand that if the index is even, the root of a negative number is not a real number.
- When finding roots of variables, students may be confused by the placement of the absolute value signs. They are needed if and only if all of the following are true: the index is even, the power of the variable in the radicand is even, and the power of the variable in the root is odd.
- Determining principal root student must remember that the principal root is only the *positive* root.

	Composito	Skills	N/atarial/	Currente	A
Most relevant CCSS	Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested Pacing	Assessment Check Point
N. DN. 1. Eveloin hour					
N.RN.1: Explain how	Review	Review	Lesson	2 days	Lesson
the definition of the	 "root" represents a 	 Simplifying and rewriting 	6.1/		Check:
meaning of rational	solution of an equation	expressions using only	online		pg. 364
exponents follows from	– refer to Unit 3	positive exponents (using	textbook		(use as
extending the	• Properties of exponents	properties of exponents)	resources		exit slip)
properties of integer	New	New			
exponents to those	• Corresponding to every	• Find the root of a fraction			
values, allowing for a	power, there is a root	(numerator and			
notation for radicals in	• If $a^n = b$, with <i>a</i> and <i>b</i>	denominator separately)			
terms of rational	real numbers and <i>n</i> is a	 Finding all real roots 			
exponents. For example	positive integer, then a	Simplifying radical			
we define $5^{1/3}$ to be the	is an <i>n</i> th root of <i>b</i> .				
cube root of 4 because		expressions by using			
we want $(5^{1/3})^3 = 5^{(1/3)3}$	• If <i>n</i> is odd: there is one	definition o roots or			
to hold, so $(5^{1/3})^3$ must	real <i>n</i> th root of <i>b</i> ,	properties of exponents			
	denoted in radical form				
equal 5.	as ⁿ √b				
N.RN.2: Rewrite	 If n is even: and b is 				
expressions involving	positive – there are two				
radicals and rational	real <i>n</i> th roots of <i>b</i> . The				
exponents using the	positive root is the				
properties of	principal root, and its				
exponents.	symbol is $\sqrt[n]{b}$. The				
	negative root is its				
A.SSE.2: Use the	opposite, or $\sqrt[n]{b}$. and				
structure of an	opposite, or - vb. and				
					7

Algebra 2 Unit 4			
expression to identify	b is negative – there are		
ways to rewrite it	no real <i>n</i> th roots of <i>b</i> .		
	• The only <i>n</i> th root of 0 is		
	0.		
	• <i>n</i> th Roots of <i>n</i> th Powers		
	Property		

Lesson 2: Multiplying and Dividing Radical Expressions

Objective

• Using product and quotient properties for combining radical expressions, SWBAT multiply and divide radical expressions, ASB correctly answering _____ exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 3: Construct viable arguments and critique the reasoning of others

Vocabulary: simplest form of a radical, rationalize the denominator, reduce a radical, product, quotient Common Misconceptions:

- Properties for multiplying and dividing radical expressions apply only to real numbers. Students may try to use these properties for complex numbers.
- Students may forget to write absolute value symbols when simplify roots with even-numbered indexes.
- Properties for multiplying and dividing radical expressions students may try to multiply radical expressions with different indexes.
- Simplifying radical expressions students may struggle with finding perfect square and cube factors to use when simplifying radicals.

Most Relevant CCSS	Concepts	Skills	Material/	Suggested	Assessment
	What students will know	What students will be able to do	Resource	Pacing	Check Point
N.RN.2: Rewrite	Review	Review	Lesson	2 days	Lesson
expressions involving	 Perfect squares and 	 Simplifying expressions 	6.2 /		check: pg
radicals and rational	perfect cubes	using properties of	online		370
exponents using the	 You can simplify the 	exponents	textbook		
properties of exponents	product of powers that	New	resources		
	have the same	 Multiply radical 			
A.SSE.2: Use structure	exponent	expressions	Note:		
of an expression to	New	 Simplify radical 	Skip		
identify ways to rewrite	 You can simplify a 	expressions	rationaliz		
it.	radical expression when	 Simplify a product of 	e the		
	the exponent of one	radicals	denomin		
	factor of the radicand is	• Divide radical expressions	ator		
	a multiple of the	(not involved			
	radical's index	rationalizing the			
	 You can simplify the 	denominator)			
	product of radicals that				
	have the same index				
	• if $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real				
	numbers, then $\sqrt[n]{a^n}\sqrt{b}$				
	$= n\sqrt{ab}$				
	• If the radicand of $\sqrt[n]{a}$				
	has a perfect <i>n</i> th power				
	among its factors, you				
	can reduce the radical				
	• if $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real				
	numbers and $b \neq 0$,				
	then $\frac{n\sqrt{a}}{n\sqrt{a}} = n\sqrt{\frac{a}{b}}$				
	$\sqrt{b} = \sqrt{b}$				

Lesson 3: Binomial Radical Expressions

Objective

- Using sum and difference properties for combining radical expressions, SWBAT add and subtract radical expressions, ASB correctly answering ______ exit slip questions.
- Using FOIL method, SWBAT multiply binomials that have radical expressions, ASB correctly answering _____ exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 3: Construct viable arguments and critique the reasoning of others
- Vocabulary: like radicals, distributive property, conjugate, rationalize the denominator

Common Misconceptions:

- Students may operate with the radicands when combining like radicals. For example, saying that $10\sqrt{6} + 2\sqrt{6} = 12\sqrt{12}$
- Incorrectly using FOIL method
- Students often write the conjugate of an expression incorrectly. They may incorrectly change signs in front of both terms of the binomial, or not change either sign. They must understand that the conjugate differs only in the sign of the *second* term of the binomial.

Most relevant CCSS	Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested Pacing	Assessment Check Point
A.SSE.2 Use the structure of an expression to identify ways to rewrite it.	New •	 Review Reducing / simplifying radicals Multiplying polynomials with the FOIL method Multiplying radical expressions Multiplying complex numbers New Use the Distributive Property to add or subtract like radicals Simplifying before combining like radicals Multiplying binomial radical expressions 	*Lesson 6.3 / online textbook resources Note: Skip page 377 Problem 6 which involved rationalizing the denominator.	3 days	Lesson Check pg. 378 Check Up #1: Covering sections 6.1 - 6.3

Lesson 4: Rational Exponents

Objective

Using properties of rational exponents, SWBAT simplify and rewrite expression involving radicals and rational ٠ exponents by using exponent properties, ASB correctly answering _____ exit slip questions.

Focused Mathematical Practices

- MP1: Make sense of problems and persevere in solving them •
- MP 3: Construct viable arguments and critique the reasoning of others.

Vocabulary: rational exponent

Common Misconceptions:

- Incorrectly converting between radical expressions and expressions with rational exponents. •
- ٠ Because students learned in 6.2 that you can only simplify products or quotients involving radical expressions when they have the same index, they may not understand that you can combine radical expressions with different indexes if you convert them to expressions with rational exponents.

Concents		Skills	Material/	Suggested	Assessment
CCSS	What students will know	What students will be able to do	Resource	Pacing	Check Point
N.RN.1: Explain	New	Review	Lesson	2 days	Lesson
how the definition	• You can write a	 Simplifying using 	6.4 / online		Check pg.
of the meaning of	radical expression	properties of exponents	textbook resources		385
rational exponents	in an equivalent	New			
follows from	form using a	 Convert between 			
extending the	fractional (rational)	exponential and radical			
properties of	exponent instead	forms	(See question bank		
integer exponents	of a radical sign	 Simplify expressions 	items)		
to those values,	• If the <i>n</i> th root of <i>a</i>	with rational exponents			
allowing for a	is a real number, m	 Combine radical 			
notation for	is an integer, and	expressions			
radicals in terms of	m/n is in lowest	• Simplify numbers with			
rational exponents.	terms, then $a^{\frac{1}{n}} =$	rational exponents			
For example we	$n\sqrt{a}$ and $a^{\frac{m}{n}} =$	• Rewrite expressions			
define $5^{1/3}$ to be the	$n\sqrt{a^m} = (n\sqrt{a})^m$ If	involving radicals and			
cube root of 4	m is negative, a	rational exponents			
because we want	<i>≠</i> 0	using the properties of			
$(5^{1/3})^3 = 5^{(1/3)3}$ to		exponents			
hold, so (5 ^{1/3}) ³ must					
equal 5.					
N.RN.2: Rewrite					
expressions					
involving radicals					
and rational					
exponents using					
the properties of					
exponents					
A.SSE.3c: Use the					
properties of					
exponents to					
transform					
expressions for					
exponential					
functions.					
	Lesson 5: Solving	Square Root and Other	r Radical Equation	S	

Objective

- Using variable isolation, SWBAT solve square root and other radical equations, ASB correctly answering _ exit slip questions.
- Using inverse operations and zero product property, SWBAT determine and eliminate extraneous solutions, ASB correctly answering _____ exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 3: Construct viable arguments and critique the reasoning of others

Vocabulary: radical equation, square root equation, extraneous solutions, Common Misconceptions:

- Many students are not in the habit of checking their solutions, so they may not recognize extraneous solutions. They must check all solutions when solving square root and radical equations. Students may also solve by graphing, because graph will not show extraneous solutions.
- Students may think that all negative numbers are extraneous solutions for square root equations. Use Problem 4 to show that this is not always the case.
- Many students do not use inverse operations correctly when solving equations. Instead of using inverse operations, they use the same operation, therefore the number / term is not canceled out (for example, in solving a multistep equation: 4x 5 = 10 → many students subtract 5 from both sides of the equation instead of adding 5.)
- Students may think they need to write "+/-" but because they are squaring, not taking a square root, the "+/-" is not applicable.

CCSS	Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested Pacing	Assessment Check Point
A.REI.2: Solve simple rational and radical equations in one variable and show how extraneous solutions may arise A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	 What students will know Review Domain of a function is all the possible x- values New A radical equation is an equation that has a variable in a radicand or a variable with a rational exponent. If the radical has index 2, the equation is a square root equation. Solving a square root equation may require that you square each side of the equation. This can introduce extraneous solutions. 		Resource Lesson 6.5 / online textbook resources	Pacing 3 days	Point Lesson check pg. 394
		• Check for extraheous solutions			

Lesson 6: Function Operations

Objective

• Using the concept of function operations, SWBAT combine standard function types using arithmetic operation, ASB correctly answering ______ exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively

Vocabulary:

Common Difficulty:

• Consider domain of function after combining functions when one of the function is radical or rational function.

CCSS	Concepts What students will know	Skills What students will be able to	Material/ Resource	Suggested Pacing	Assessment Check Point
F.BF.1.b: combine standard function types using arithmetic operations.	Review • Domain of a function is all the possible x- values New • The domains of the sum, differences, product, and quotient functions consist of the x-values that are in the domains of both f and g. Also, the domain of the quotient function does not contain any x- value for which $g(x) =$ 0 for $\frac{f(x)}{g(x)}$	do <i>Review</i> • Combine like terms • Factor polynomials • Use distributive property to combine like terms <i>New</i>	Lesson 6.6 / online textbook resources (Just focus on Problem #1~2) Note: In this lesson only focus on combine functions using arithmetic operation NO Compositio n of Functions	2 days	Lesson check pg. 401 Problem #9, 10, 12, 13
	Lesson 7: I	nverse Relations and I	Functions		

Objective

• Using x and y switch and solving process, SWBAT find the inverse of a relation or function, ASB correctly answering ______ exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 3: Construct viable arguments and critique the reasoning of others

Vocabulary: inverse relation, inverse function, one-to-one function, composition of inverse functions, $f^{-1}(x)$, identity function

Common Misconceptions:

- Students may think that the inverse of a function is *always* a function. The inverse of a function will only be a function if the function is one-to-one.
- When solving, students may only look for the same number of solutions as the original equation.
- Students may confuse *f* inverse with *f* to the negative one power. The notation for inverse is f⁻¹(x), while *f* to the negative one is f(x)⁻¹.

CCSS	Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested Pacing	Assessment Check Point
F.BF.4.a: Solve an equation of the form f(x) = c for a simple function <i>f</i> that has an inverse and write an expression for the inverse.	 <i>Review</i> For any function <i>f</i>, each x-value in the domain corresponds to exactly one y-value in the range. <i>New</i> If a relation pairs element <i>a</i> of its domain to element <i>b</i> of its range, the inverse relation pairs <i>b</i> with <i>a</i>. If both a relation and its inverse happen to be functions, they are inverse functions. The inverse of a function may or may not be a function. The range of a relation of its inverse. The domain of a relation is the range of its inverse. The graphs of a relation and its inverse are the reflections of each other in the line y = x. A one-to-one function means that each y-value in the range corresponds to exactly one x-value in the inverse 	 Review Using inverse operations to solve a multi-step equation Substitution (helps students to understand "switching" x and y New To find the inverse of a function, switch x and y, then solve for y. Find the domain and range for the inverse of a function 	Lesson 6.7 / online textbook resources Note: composing inverse functions is not in algebra 2 standards Graphing of inverse function will not be assessed in Alg 2 PARCC (But we can use the graph to explain the meaning of inverse function by inversing domain and range)	2 days	Lesson check pg. 409

Algebra 2 Unit 4	-			
		~	~	

<u> </u>			
	of a function is also a		
	function if the original		
	function is one-to-one.		
	•		

Ideal Math Block

The following outline is the department approved ideal math block for grades 9-12.

1) Do Now (7-10 min)

- a. Serves as review from last class' or of prerequisite material
- b. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up

- 2) Starter/Launch (5 min)
 - a. Designed to introduce the lesson
 - b. Uses concrete or pictorial examples
 - c. Attempts to bridge the gap between grade level deficits and rigorous, on grade level content
 - d. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 3) Mini-Lesson (15-20 min)
 - a. Design varies based on content
 - b. May include an investigative approach, direct instruction approach, whole class discussion led approach, etc.
 - c. Includes CFU's
 - d. Anticipates misconceptions and addresses common mistakes
- 4) Class Activity (25-30 min)
 - a. Design varies based on content
 - b. May include partner work, group work/project, experiments, investigations, game based activities, etc.
- 5) Independent Practice (7-10 min)
 - a. Provides students an opportunity to work/think independently

6) Closure (5-10 min)

- a. Connects lesson/activities to big ideas
- b. Allows students to reflect and summarize what they have learned
- c. May occur after the activity or independent practice depending on the content and objective
- 7) DOL (5 min)
 - a. Exit slip

Sample Lesson Plan

Lesson	5: Solving Square Root and Other Radical Equations (Day 1	Days	1 (of 3)
	of lesson) – Day One focus is on solving square root		
	equations. Day Two should focus on solving other radical		
	equations (6.5 Problem 2) and Checking for Extraneous		
	Solutions (6.5 Problem 4). Day Three should focus on		

Algebra z Offit 4					
	solving equations with two radicals (6.5 Pro				
Objective	Using variable isolation, SWBAT so	ve square root CCSS	A.REI.2: Solve simple		
	and other radical equations, ASB co	•	rational and radical		
	answering exit slip question		equations in one variable		
	 Using inverse operations and zero 		and show how extraneous		
	property, SWBAT determine and el		solutions may arise		
	extraneous solutions, ASB correctly	answering	A.CED.4: Rearrange		
	exit slip questions.		formulas to highlight a		
			quantity of interest, using		
			the same reasoning as in		
			solving equations.		
Learning	(10 min) Do Now + Do Now Review: Studer	its work in pairs			
activities/strategies	1. Which of the following conclusions	is true about the stater	nent below?		
		$x^2 = \sqrt{x}$			
	a. The statement is always tr	le			
	b. The statement is true when				
	c. The statement is true when	-			
	d. The statement is never tru				
	2. Solve $2(3x + 5) + 6 = 10$ using two c		rihe vour steps in each		
	method.	merent methous. Desc	The your steps in each		
	Review Do Now solutions				
	1. (c)				
	2. x = -1				
	(5 min) Launch: Discussion – Solving multi-	step equations using bal	ance method (there are many		
	applets available online to visually represent the balance method:				
	http://www.fi.uu.nl/toepassingen/02018/toepassing_wisweb.en.html is one example)				
	* Ask students what the inverse o	peration is for a square	root		
	Mini Lesson:				
	(5 – 6 min) Define radical equation : show t	he table below to stude	nts and have them turn and		
	talk with a partner to come up with a sente	nce that defines a radic	al equation. Give students 2		
	minutes to discuss, and 1 minute to write o		•		
	ideas before providing them with formal de	•			
	Examples of Radical Equations	Non-Examples of Rad	ical Equations		
	$\sqrt{x} + 5 = 11$	$\sqrt{5} + x^2 =$	11		
			-000		
	$\sqrt[3]{x-4} = 7$	$x - 4 = \sqrt[4]{2}$	16		
	$4\sqrt{x-7} + 12 = 28$	$x\sqrt{10-7}+12$	2 = 28		
	$\sqrt[5]{x} = 225$	$x^4 = \sqrt[3]{27}$			
	Definition: A <u>radical equation</u> is an equatio				
	rational exponent. (students should alread reminder)	y know what a "radicand	d" is, however may need a		
	(2 – 3 min) Discuss solving equations (refe	hack to Do Now #2 and	Launch). Ask students "what		
	do we know about solving equations (refe		-		
	variable is alone on one side of the equation		_		
	equations, we must isolate the radical on c	•			
	we raise each side to the power suggested	by the index (refer back	to Launch – What is the		
	inverse of square root?).				

ifferent solving methods $\sqrt{x} + 5 = 11$ $\sqrt{x} + 5 = 11$ $\sqrt{x} + 5 = 11$ $\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} + 5 - 5 = 11 - 5$ $\sqrt{x} + 5 - 5 = 11 - 5$ $\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} = 6$ $\sqrt{x} = 6$ $\sqrt{x} = \sqrt{36}$ $x = 36$ $\sqrt{x} = 6$ $\sqrt{x} = \sqrt{36}$ $x = 36$ $(\sqrt{x})^2 = (6)^2$ $x = 36$ Checkl $\sqrt{x} - 4 = 7$ checkl $\sqrt{x} - 4 = 7$ Checkl $\sqrt{x} - 4 = 7$ $\sqrt{x - 4} = 7$ oblution: $x = 121$ * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ * The radicand in the first equation is x and the radicand in the second ifferent solving methods: $\sqrt{x - 4} = 7$ $\sqrt{x - 4} = 49$ $x - 4 = 49$		
$\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} = 6$ $\sqrt{x} = -6$ $\sqrt{x} = -7$ $\sqrt{x} = -$		
$\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} + 5 = 6 + 5$ $\sqrt{x} = 6$ $\sqrt{x} = 6$ $\sqrt{x} = \sqrt{36}$ $x = 36$ Check! $\sqrt{x} - 4 = 7$ Check! $\sqrt{x} - 4 = 7$ Solution: $x = 121$ * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ solution: $x = 121$ * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ solution: $x = 121$ * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ solution: $x = 121$ * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ and compare to answer from above the second in t	11	
$\sqrt{x} + 5 = 6 + 8$ $\sqrt{x} = 6$ $\sqrt{x} = \sqrt{36}$ $x = 36$ Check! $\sqrt{x} = 4 = 7$ $\sqrt{x} - 4 = 49$ $x - 4 = 49 + 4$ $\left(\sqrt{x} - 4\right)^2 = (7)^2$ $x - 4 = 49$ $x - 4 = 49 + 4$	11-5	
$\sqrt[3]{x} = 6$ $\sqrt[3]{x} = \sqrt{36}$ $x = 36$ Checkl $(\sqrt{x})^2 = (6)^2$ $x = 36$ $(x^{\frac{1}{2}})^2 = (6)^2$ $x = 36$ Checkl $\sqrt{x} = 4 = 7$ Checkl $\sqrt{x} - 4 = 7$ Solution: x = 121 $* \text{ Ask students: "what is the difference between \sqrt{x} - 4 = 7 \text{ and } \sqrt{x - 4} The radicand in the first equation is x and the radicand in the second formin) Example Two: Solve \sqrt{x - 4} = 7 and compare to answer from above different solving methods: \sqrt{x - 4} = 7 \sqrt{x - 4} = \sqrt{49} x - 4 = 49 x - 4 = 49$		
$\sqrt{x} = \sqrt{36}$ $x = 36$ Check! $x = 36$ Check! $\sqrt{x} = \sqrt{36}$ $x = 36$ Check! $\sqrt{x} = 4 = 7$ Solution: x = 121 $x = 36$ Check! $\sqrt{x} = 4 = 7$ Solution: x = 121 $x = 36$ Check! $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ Solution: x = 121 $\sqrt{x} = 4 = 7$ $\sqrt{x} = 4 = 9$ $x = 4 = 49 + 4$ $x = 4 = 49 + 4$ $x = 4 = 49 + 4$		
$x = 36$ Check! $x = 36$ Check! $x = 36$ Check! $\sqrt{x} = 47$ Check! $\sqrt{x} = 4 = 7$ Solution: x = 121 * Ask students: "what is the difference between $\sqrt{x} = 4 = 7$ and $\sqrt{x} = 4$ * The radicand in the first equation is x and the radicand in the second or min) Example Two: Solve $\sqrt{x} = 4 = 7$ and compare to answer from above different solving methods: $\sqrt{x} = 4 = 49$ $x = 4 = 49$	6	
Check! Check! The radicand in the first equation is x and the radicand in the second the radicand in the first equation is x and the radicand in the second the radicand in the first equation is x and the radicand in the second the radicand in the first equation is x and the radicand in the second the radicand in the first equation is x and the radicand in the second the radicand in the first equation is x and the radicand in the second the radicand in the second in	$(c)^2$	
Check! 5 min) Student Practice: $\sqrt{x} - 4 = 7$ blution: x = 121 * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ * The radicand in the first equation is x and the radicand in the second 5 min) Example Two: Solve $\sqrt{x} - 4 = 7$ and compare to answer from above ifferent solving methods: $\sqrt{x-4} = 7$ $\sqrt{x-4} = \sqrt{49}$ x-4 = 49 x-4 = 49 + 4 - 4 $\sqrt{x-4} = 49 + 4$ $\sqrt{x-4} = 49 + 4$	(0)	
5 min) Student Practice: $\sqrt{x} - 4 = 7$ blution: x = 121 * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - \frac{1}{2}$ * The radicand in the first equation is x and the radicand in the second in the second in the second form in the second in	36	
5 min) Student Practice: $\sqrt{x} - 4 = 7$ blution: x = 121 * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - \frac{1}{2}$ * The radicand in the first equation is x and the radicand in the second in the second in the second form in the second in		
$\sqrt{x} - 4 = 7$ blution: x = 121 * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - \frac{1}{2}$ * The radicand in the first equation is x and the radicand in the second in t		
blution: x = 121 * Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - \frac{1}{2}$ * The radicand in the first equation is x and the radicand in the second 5 min) Example Two: Solve $\sqrt{x} - 4 = 7$ and compare to answer from above ifferent solving methods: $\sqrt{x-4} = 7$ $\sqrt{x-4} = \sqrt{49}$ x-4 = 49 x-4 = 49 + 4 - 4 $\sqrt{x-4} = 49 + 4 - 4$ $\sqrt{x-4} = 49 + 4 - 4$		
* Ask students: "what is the difference between $\sqrt{x} - 4 = 7$ and $\sqrt{x} - 4 = 7$ * The radicand in the first equation is x and the radicand in the second ifferent solving methods: $\sqrt{x-4} = 7$ $\sqrt{x-4} = \sqrt{49}$ x-4 = 49 x-4 = 49 + 4 - 4 $\sqrt{x-4} = 49 + 4 - 4$ $\sqrt{x-4} = 49 + 4 - 4$ $\sqrt{x-4} = 49 + 4 - 4$		
* The radicand in the first equation is x and the radicand in the second formin) Example Two: Solve $\sqrt{x-4} = 7$ and compare to answer from above ifferent solving methods: $\sqrt{x-4} = 7$ $\sqrt{x-4} = \sqrt{49}$ x-4 = 49 x-4 = 49 + 4 - 4 $\sqrt{x-4} = 7$ $\left(\sqrt{x-4} = 7$ $\left(\sqrt{x-4} = 7$ $\left(\sqrt{x-4}\right)^2 = (7)^2$ x-4 = 49 x-4 = 49 + 4 $\left[\left(x-4\right)^{\frac{1}{2}}\right]^2 = x-4 = 49$		
ifferent solving methods: $ \frac{\sqrt{x-4}}{\sqrt{x-4}} = 7 $ $ \frac{\sqrt{x-4}}{\sqrt{x-4}} = 49 $ $ \frac{\sqrt{x-4}}{\sqrt{x-4}} = 49 $ $ \frac{\sqrt{x-4}}{\sqrt{x-4}} = 49 $		
ifferent solving methods: $\sqrt{x-4} = 7$ $\sqrt{x-4} = 7$ $\sqrt{x-4} = 7$ $\sqrt{x-4} = \sqrt{49}$ $\left(\sqrt{x-4}\right)^2 = (7)^2$ $\left[\left(x-4\right)^{\frac{1}{2}}\right]^2 = (x-4)^{\frac{1}{2}}$ $x-4 = 49$ $x-4 = 49$ $x-4 = 49$ $x-4 = 49 + 4 - 4$ $x-4 = 49 + 4$ $x-4 = 49 + 4$	•	on is
$ \sqrt{x-4} = 7 \sqrt{x-4} = 7 \sqrt{x-4} = 7 \sqrt{x-4} = 7 (\sqrt{x-4})^2 = (7)^2 (x-4)^{\frac{1}{2}} = (7)^{\frac{1}{2}} (x-4)^{\frac{1}{2}} = (7$	'e	
$ \sqrt{x-4} = 7 \sqrt{x-4} = 7 \sqrt{x-4} = 7 \sqrt{x-4} = 7 (\sqrt{x-4})^2 = (7)^2 (x-4)^{\frac{1}{2}} = (7)^{\frac{1}{2}} (x-4)^{\frac{1}{2}} = (7$		
$ \sqrt{x-4} = \sqrt{49} x-4 = 49 x-4 = 49 + 4 - 4 x-4 = 49 + 4 - 4 x-4 = 49 + 4 - 4 x-4 = 49 + 4 $ $ \left[\left(x-4 \right)^{\frac{1}{2}} \right]^2 = (7)^2 x-4 = 49 x-4 = 49 + 4 - 4 \\ x-4 = 49 + 4 \\ x-4$		
x-4=49+4-4 x-4=49+4		
x-4=49+4-4 x-4=49+4	$ ^2$ () ²	
x-4=49+4-4 x-4=49+4	=(7)	
x - 4 + 4 = 49 + 4	1 10	
	4 = 49	
x = 53 $x = 53$ $x = 44 + 4 = 53$	+4 = 49 + 4	

(5 – 6 min) Student Practice:

solution x = 219

Check!

(5 – 6 min) Example Three:

 $\sqrt{x+6} = 15$

Check!

 $4\sqrt{x-7} + 12 = 28$ * Ask students: "what is the radicand?" "what do we need to isolate?"

Different solving methods:

$4 \cdot \sqrt{x-7} = 4 \cdot 4$ $4 \cdot \sqrt{x-7} = 4 \cdot 4$ $\sqrt{x-7} = 4 \cdot 4$ $\sqrt{x-7} = \sqrt{16}$ $x-7 = 16$ $x-7 = 16 + 7 - 7$ $x - 7 = 16 + 7 - 7$ $x = 23$ Check!	$\frac{\sqrt{4}}{\sqrt{x-7}} = \frac{4}{4}$ $\left(\sqrt{x-7}\right)^2 = (4)^2$ $\frac{x-7}{16} = 16$ $\frac{x-7+7}{16} = 16+7$ $x = 23$ Check!	$\sqrt{x-7} + 3 - 3 = 7 - 3$ $\sqrt{x-7} = 4$ $\left(x-7\right)^{\frac{1}{2}} = 4$ $\left(\left(x-7\right)^{\frac{1}{2}}\right)^{2} = 4^{2}$ $x-7 = 16$ $x-7+7 = 16+7$ $x = 23$ Check!
--	---	--

(6 – 7 min) Student Practice:

 $5\sqrt{x+3} - 10 = 15$

solution: x = 22

(15 min) Class Activity: Students work in pairs. Cut out pieces in advance (Steps and reasons are not in order except for the given equation and the check). Students put solution steps in order, as well as match the reason to each step. Depending on the level of students in the class, you

may want them to copy or glue the examples into their notebooks. During activity, circulate through classroom to make sure all pairs have correct matches.

Steps	Reasons
$\sqrt{2x-1} + 5 = 8$	Given Equation
2x - 1 = 9	Simplify
$\sqrt{2x-1} = 3$	Square both sides to eliminate the square root.
2x = 10	Division Property of Equality
$\sqrt{2x-1}+5-5=8-5$	Isolated square root
$\left(\sqrt{2x-1}\right)^2 = \left(3\right)^2$	Addition Property of Equality
<i>x</i> = 5	Subtraction Property of Equality
$\frac{2x}{2} = \frac{10}{2}$	Simplify
2x - 1 + 1 = 9 + 1	Simplify
$\sqrt{2(5)-1} + 5 = 8$ $\sqrt{10-1} + 5 = 8$ $\sqrt{9} + 5 = 8$ 3 + 5 = 8	Check
J+J=0	

<u>Independent</u> Practice to complete activity (6.5 Problem 1, complete "Got it?" #1 if time allows for additional practice): Students may check work against solution in textbook once complete. $3 + \sqrt{2x-3} = 8$

(5 min) Closure: Have students summarize lesson in notebook. Ask a few students to share out. (10 min) Exit Slip: Error Analysis (explain the error in your own words and correctly solve the radical equation)

$$\sqrt{2x-1} = 3$$

Algebra 2 Unit 4

Algebra Z Unit 4						
	$\sqrt{2x} = 4$					
	2x = 16					
	x = 8					
	x = 0					
Differentiation	Possible differentiation strategies: (please design your own differentiation based on your students learning styles, academic level, strength and weakness,)					
	leterogeneous pairing to allow for peer mentoring throughout investigation activity alculators will be provided					
	ligher performing students: only provide with steps during activity. Must come up with asons on their own					
	[*] Graphic organizer provided to lower performing students with given equations for all examples to keep them organized					
Assessment	Formative: *circulating throughout class during lesson,					
	*observe students when they are answering questions, discussing with their					
	partner, working on class worketc.					
	*exit slip					
	*homework – select problems from online textbook worksheet / textbook problems					
Common	1. Many students do not use inverse operations correctly when solving equations. Instead					
Misconceptions/	of using inverse operations, they use the same operation, therefore the number / term					
Difficulty	is not canceled out (for example, in solving a multistep equation: $4x - 5 = 10 \rightarrow$ many					
Dimenty						
	students subtract 5 from both sides of the equation instead of adding 5.)					
	2. Students may think they need to write "+/-" but because they are squaring, not taking a					
	square root, the "+/-" is not applicable.					

Supplemental Material

CCSS Dropbox Location and Filena	Link (Original Task)
----------------------------------	----------------------

Algebra 2 Unit 4		
A.CED.4, A.SSE.2, 3c	Orange 9-12 Math > Curiculum	
A.REI.2, F.BF.1b	Algebra 2 >Tire 1> Unit 4 >	
F.BF.4a, N.RN.1, 2	Question Bank	
A.REI.2	Orange 9-12 Math > Curriculum	https://www.illustrativemathematics.org/illustrations/3
	Algebra 2 > Tier 1> Unit 4 >	<u>91</u>
	Supplemental Material > Radical	
	Equation	
N.RN.1	Orange 9-12 Math > Curriculum	https://www.illustrativemathematics.org/illustrations/1
	Algebra 2 > Tier 1 > Unit 4 >	866
	Supplemental Material > Evaluate	
	Exponential Expression	
N.RN.2	Orange 9-12 Math > Curriculum	https://www.illustrativemathematics.org/illustrations/6
	Algebra 2 > Tier 1> Unit 4 >	<u>08</u>
	Supplemental Material > Rational	
	or Irrational Number	

Multiple Representations

PARCC Sample Assessment (From PARCC practice test)

CCSS: A.REI.2 PARCC Item Type: Type I

What extraneous solution arises when the equation $\sqrt{x+3} = 2x$ is solved for x by first squaring both sides of the equation?

Enter your answer in the box.

CCSS: N.RN.2, N.RN.1 PARCC Item Type: Type I

Consider the equation $\frac{4x^2}{2^x} = 2$

Part A: Which equation is equivalent to the equation shown?

A.
$$2^{x^2} = 2$$

C. $2^{2x} = 2$
B. $2^{x^2 - x} = 2$
D. $2^{x^2 - x} = 2$

Part B: Which values are solutions to the equation?

Select all that apply.

A. -2 **B.** -1 **C.** $-\frac{1}{2}$ **D.** $\frac{1}{2}$ **E.** 1 **F.** 2

Unit Authentic Assessment :(See OHS Dropbox file: Algebra 2 U4 Authentic Assessment)

Unit 4 Performance Assessment Task (Critical Area)

Who Wins the Race?

Alice and Briana each participate in a 5-kilometer race. Alice's distance covered, in kilometers, after t minutes can be modeled by the equation $a(t) = \frac{t}{4}$, Briana's progress is modeled by the equation $b(t) = \sqrt{2t - 1}$

Part A: Who gets to the finish line first? Show your work or explain how you arrived your answer.

Part B: At what time(s) during the race are Alice and Briana side by side? Show your work or explain how you arrived your answer.

Unit 4 Performance Assessment Task (Critical Area)

Algebra	2١	Unit 4
---------	----	--------

Inverse Function

CCSS: F.BF.4a, F-LE.A2

Let f be the function that assigns to a temperature in degrees Celsius its equivalent in degrees Fahrenheit.

Part A: The freezing point of water in degree Celsius is 0 while in degrees Fahrenheit it is 32. The boiling point of water is 100 degrees Celsius and 212 degrees Fahrenheit. Given that the function f is linear, use this information to find an equation for f.

Part B: Find the inverse of the function f and explain its meaning in terms of temperature conversions.

Part C: Is there a temperature which is the same in degrees Celsius and in degree Fahrenheit? Explain how you know.

Algebra 2 Unit 4 Unit Assessment Question Bank: (See OHS Dropbox file: Algebra 2 U4 Question Bank)

Additional Resources

From pearsonsuccessnet.org

- Find the errors
- Enrichment
- Re-teaching
- Activities, games, and puzzles
- Performance tasks
- Chapter project

Pearson Algebra 2 Common Core Teacher's Edition

Student Resources

From pearsonsuccessnet.org;

- Standardized test prep
- Homework tutors
- Think about a plan
- Student companions

Student workbook