Algebra 2 Unit Plan

Unit 3: Polynomials and Polynomial Functions

ORANGE PUBLIC SCHOOLS 2014 - 2015 OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF MATHEMATICS

Algebra 2 Unit 3 **Contents**

Unit Overview	2
Calendar (Honors)	3
Scope and Sequence	4
Ideal Math Block	11
Sample Lesson Plan	12
Supplemental Material	14
Multiple Representations	15
Unit Assessment Question Bank: (See OHS Dropbox file: Algebra 2 U3 Question Bank)	22
Additional Resources	22
From pearsonsuccessnet.org	22
Find the errors	22
Enrichment	22
Re-teaching	22
Activities, games, and puzzles	22

Algebra 2 Unit 3 **Unit Overview**

Unit	3: Polynomials and Polynomial Functions
Essenti	ial Questions
<	What does the degree of a polynomial tell you about its related polynomial function?
	For a polynomial function, how are factors, zeros, and x-intercepts related?
►	For a polynomial equation, how are factors and roots related?
Enduri	ng Understandings
	A polynomial function has distinguishing "behaviors." You can look at its algebraic form and know
	something about its graph. You can look at its graph and know something about its algebraic form.
	Knowing the zeros of a polynomial function can help you understand the behavior of its graph.
	If $(x - a)$ is a factor of a polynomial, then the polynomial has value 0 when $x = a$. If a is a real
	number, then the graph of the polynomial has (a, 0) as an x-intercept.
	You can divide polynomials using steps that are similar to the long-division steps that you use to
	divide whole numbers.
×	The degree of a polynomial equation tells you how many roots the equation has.
Comm	on Core State Standards
	N.C
	A.CED.1: Create equations and inequalities in one variable and use them to solve problems.
	A.SSE.1a: Interpret parts of an expression such as terms, factors, and coefficients.
	A.SSE.2: Use the structure of an expression to identify ways to rewrite it.
	A.APR.2: Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the
	remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.
	A.APK.3: Identify zeros of polynomials when suitable factorizations are available, and use the
	Zeros to construct a rough graph of the function defined by the polynomial.
	A.REI.III Explain why the x-coordinates of the equations where the graphs of the equations $y = f(x)$ and $y = g(y)$ intersect are the solutions of the equation $f(y) = g(y)$
	and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$
	F.IF.4. For a function that models a felationship between two quantities, interpret key features of graphs and stables in terms of the quantities, and sketch graphs showing key features given a verbal
	description of the relationship. Key features include: intercents: intervals where the function is
	increasing decreasing positive or pagative: relative maximums and minimums: symmetries: end
	hebavior: and periodicity
	EIE 5 Relate the domain of a function to its granh and where applicable to the quantitative
	relationshin it describes
	F.IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or
, , , , , , , , , , , , , , , , , , ,	as a table) over a specified interval. Estimate the rate of change from a graph
	F.IF.7.c: Graph polynomial functions, identifying zeros when suitable factorizations are available
	and showing end behavior.
	A.APR.1: Understand that polynomials form a system analogous to the integers, namely, they are
	closed under the operations of addition, subtraction, and multiplication; add, subtract, and
	multiply polynomials.
	A.APR.6: Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + c(x)$
	r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the
	degree of b(x), using inspection, long division, or, for the more complicated examples, a computer
	algebra system.
>	
M	: Major Content S: Supporting Content A : Additional Content

Algebra 2 Unit 3 **Calendar (Honors)**

November 2014						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
11/16	11/17	11/18	11/19	11/20 Unit 3 Diagnostic	11/21 Lesson 1 Polynomial functions	11/22
11/23	11/24 Lesson 1 Polynomial functions	11/25 Lesson 2 Polynomials, Linear factors, and zeros	11/26 Lesson 2 Polynomials, Linear factors, and zeros	11/27 No School	11/28 No School	11/29
		De	ecember 2014	1		
Sun	Mon	Tue	Wed	Thu	Fri	Sat
11/30	12/1 Lesson 2 Polynomials, Linear factors, and zeros	12/2 Lesson 3 Solving Polynomial Equations	12/3 Lesson 3 Solving Polynomial Equations	12/4 Lesson 3 Solving Polynomial Equations	12/5 Check up 1 (re-teaching flexible day)	12/6
12/7	12/8 Lesson 4 Dividing Polynomials	12/9 Lesson 4 Dividing Polynomial	12/10 Lesson 4 Dividing Polynomials	12/11 Performance Assessment (Critical Area Task 1)	12/12 Lesson 5 Polynomial Models in the Real World	12/13
12/14	12/15 Lesson 5 Polynomial Models in the Real World	12/16 Lesson 5 Polynomial Models in the Real World	12/17 Check up 2 (re-teaching flexible day)	12/18 Review	12/19 Performance Assessment (Modeling & Function Task)	12/20
12/21	12/22 Unit Assessment	12/23 Re-teaching	12/24 No school	12/25 No School	12/26 No School	12/27
12/28	12/29 No school	12/30 No school	12/31 No school	1/1 No school	1/2 No school	1/3

Algebra 2 Unit 3 Scope and Sequence

Overview				
Lesson	Торіс	Suggesting Pacing and Dates		
1	Polynomial Functions	2 days		
2	Polynomials, Linear Factors, and Zeros	3 days		
3	Solving Polynomial Equations	3days		
4	Dividing Polynomials	3 days		
5	Polynomial Models in the Real World	2 day		

Assessment Framework

Assessment	CCSS	Estimated Time	Format	Graded
Diagnostic/Readiness Assessment (Beginning of Unit)	A.CED.2, F.IF.5, A.CED.1, A.APR.3, A.REI.4.b	½ Block	Individual	No
Assessment Check Up 1 (After lesson 5.3)	F.IF.7.c, A.SSE.1.a, A.APR.3, A.REI.11, A.SSE.2, A.APR.2, A.APR.1, A.APR.6	½ Block	Individual	Yes
Performance (Critical Area) Task Graphing from Roots	A.APR2, A.APR3	½ Block	Individual	Yes
Check up 2 Pearson Algebra II Chapter 5 quiz <i>p 311</i>	F.IF.7.c, A.SSE.1.a, A.APR.3, A.REI.11, A.SSE.2, A.APR.2, A.APR.1, A.APR.6	½ Block	Individual	Yes
Unit 3 Assessment	F.IF.7.c, A.REI.11, A.APR.2, N.CN.7, N.CN.8, F.IF.5, A.SSE.1a, A.APR.3, A.SSE.2, A.APR.1, A.APR.6, N.CN.9, F.IF.4, F.IF.6	1 Block	Individual	Yes
Performance (Modeling)Task Introduction to Polynomials: College Fund	A.REI.11, A.CED.1.a	1 Block	Pair/group	Yes
Others				

Lesson 1: Polynomial Functions

Objective

Using standard form of a polynomial function, students will work individually/in pair/in group to classify
polynomial and describe end behavior of polynomial functions, ASB correctly answering _____ exit slip
questions.

Focused Mathematical Practices

- MP2: Reason abstractly and quantitatively
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: Monomial, degree of a monomial, polynomial, degree of a polynomial, polynomial function, standard form of a polynomial function, roots, zeros, turning point, end behavior

Common Misconceptions:

- Classifying polynomial by degree students choose degree based on first term, before putting function in standard form
- Describing end behavior of a polynomial students may forget the rules of the table, then incorrectly plug values into the polynomial equation (specifically, plugging in a negative number. i.e. incorrectly stating that (-1)² = -1)

Most relevant CCSS	Concepts	Skills	Material/	Suggested	Assessment
Most relevant CCSS F.IF.7.c: Graph polynomial functions, identifying zeros when suitable factorizations are available and showing end behavior	 What students will know Review Vocabulary (degree, standard form, monomial, polynomial, leading term, increasing / decreasing, end-behavior) New Polynomials can be classified by degree or number of terms A function is increasing when the y-values increase as x-values increase, and is decreasing when y-values decrease as x-values increase 	 What students will be able to do Review Create a table for a pattern / write a pattern rule Identify a pattern using common differences, and find the value of nth term of a pattern Write a polynomial in standard form in order to more easily classify by degree New Determine end behavior of a polynomial from leading term Use common differences in y-values to determine degree of a polynomial 	Resource Lesson 5.1 / online textbook resources	2 days	Assessment Check Point Lesson Check: pg. 285 (use as exit slip)

Lesson 2: Polynomials, Linear Factors, and Zeros

Objective

- Using factored form of a polynomial, SWBAT analyze and graph the polynomial function showing key features, ASB correctly answering _____ exit slip questions.
- Using zeros of a polynomial, SWBAT create a polynomial function from its zeros, ASB correctly answering _____ exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Use appropriate tools strategically
- MP 3: Construct viable arguments and critique the reasoning of others

Vocabulary: Factor theorem, multiple zero, linear factor, multiplicity, relative maximum, relative minimum Common Misconceptions:

- Errors with determining zeros from factors (i.e. errors with zero product property: choosing (2,0) as the zero corresponding to a factor of (x + 2), also errors with negatives ex. factor: -(x + 4), also forgetting the (0,0) zero corresponding to a factor of "x")
- Graphing polynomials: forgetting to plot the y-intercept, incorrectly following curve of the polynomial graph (errors with turning points / even-touch odd-cross)
- Errors with distributive property when writing polynomial from zeros

Most Polovant CCSS	Concepts	Skills	Material/	Suggested	Assessment
Wost Relevant CC35	What students will know	What students will be able to do	Resource	Pacing	Check Point
F.IF.7.c: Graph	Review	Review	Lesson	3 days	Lesson
polynomial functions,	 Polynomial increasing / 	 Determining end- 	5.2		check: pg
identifying zeros when	decreasing rules learned	behavior from the leading			22;
suitable factorizations	in Lesson 5.1	term			#'s 1,3,
are available and	New	 Factor a polynomial – 			5,&7
showing end behavior	 (x – b) is a linear factor 	specifically with GCF			
	of the polynomial P(x), b	New			
A.APR.3: Identify zeros	is a zero of the	• Use zero product			
of polynomials when	polynomial function y =	property to determine			
suitable factorizations	P(x), b is a root (or	zeros of the polynomial			
are available, and use	solution) of the	• Graph a polynomial using			
the zeros to construct a	polynomial equation	zeros, y-intercept, end-			
rough graph of the	P(x) = 0, and b is an x-	behavior, and test points			
function defined by the	intercept of the graph	Create a polynomial			
polynomial.	of $y = P(x)$	function from its zeros			
		• Finding the multiplicity of			
		a zero			

Objective

• Using factoring and graphing skills, SWBAT solve a polynomial equation, ASB correctly answering 3 / 3 exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 3: Construct viable arguments and critique the reasoning of others.
- MP 5: Use appropriate tools
- MP 6: Attend to precision

Vocabulary: Sum of cubes, difference of cubes Common Misconceptions:

- Forgetting the "0" solution (ex. x(2x + 1)(x 3))
- Incorrectly writing an x-intercept (ex. (0,4) instead of (4,0))
- Factoring errors (students especially struggle with factoring quadratics with a ≠1, sum / difference of cubes, and remembering to check for GCF first)
- Quadratic formula errors (students often incorrectly plug numbers into the formula) specifically with imaginary solutions (students will simplify V-9 as 3, instead of 3i)

A.REI.11:ExplainReviewReview* Lesson 5.3,3 daysLessonwhy the x- coordinates of the points where the graphs of the equations y = f(x)· Zero product property· Factor methods: factoring out GCF, factoring quadratic* Solving for Zeros Discovering Your3 daysLesson Check pg. 300; #s 1- 7, 9 (#8 honors)equations y = f(x) intersect are the solutions of the equation f(x) = g(x)· The real solutions intercepts of the graph of the graph of therefect square trinomials, difference of difference of* Solving for Zeros Discovery3 daysLessonA.REI.11:Explain points where the property· Zero product factoring out GCF, factoring quadratic trinomials (algebra trinomials (algebra tiles, x-method, box tiles, x-method,	Most relevant CCSS	Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested Pacing	Assessment Check Point
A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see x ⁴ - y ⁴ as (x ²) ² - (y ²) ² , thus recognizing it as a difference of squares that can be factored as (x ² - y ²)(x ² + y ²).Activity (see example in Supplemental Material section), * Box Problem Authentic Assessment (see Authentic Assessment section)A.SSE.2 Use the grouping • Determine zeros 	A.REI.11: Explain why the x- coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$ A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	 What students will know Review Zero product property New The real solutions to a polynomial equation give the x- intercepts of the graph of the polynomial function 	able to do Review • Factor methods: factoring out GCF, factoring quadratic trinomials (algebra tiles, x-method, box method, etc.), perfect square trinomials, difference of squares, factor by grouping • Determine zeros from factors • Quadratic formula New • Factor sum and difference of cubes	 *Lesson 5.3, *5.3 Game: Discovering Your Roots (resource online), *Polynomial Factoring BINGO, *"Factor This" game from Lesson 4.4 (resource online), *Factor Stations (see example in Supplemental Materials section), *Solving for Zeros Discovery Activity (see example in Supplemental Material section), *Box Problem Authentic Assessment (see Authentic Assessment section) 	3 days	Lesson Check pg. 300; #s 1- 7, 9 (#8 honors)

Lesson 4: Dividing Polynomials

Objective

• Using long division and synthetic division, SWBAT rewrite polynomials in factor forms or in the form of q(x) + r(x)/b(x), ASB correctly answering ____ exit slip questions.

Focused Mathematical Practices

- MP 3: Construct viable arguments and critique the reasoning of others.
- MP 7: Look for and make use of structure
- MP 6: Attend to precision

Vocabulary: synthetic division, Remainder theorem, divisor, quotient, remainder, dividend, dimensions Common Misconceptions:

- Distributing negative sign when subtracting (i.e. $-(4x^2 + 20x) = -4x^2 20x$)
- Students stop long division process before the remainder is a polynomial with one degree less than the original polynomial

CCSS	Concepts	Skills	Material/	Suggested	Assessment
	What students will know	What students will be able to do	Resource	Pacing	Check Point
A.APR.2: Know and	Keview:	<i>Review</i>	Lesson	3 days	Lesson
apply the	division Algorithms	Numerical long division	5.4		200 #- 1
Remainder	division Algorithm	Factoring out GCF	Divide veine electre		308 #S 1 -
neorem: For a	Nou	New	tilos		5
polynomial p(x) and	New	Long division –	http://www.doo.vir		Class
a number a, the	Algorithm for	polynomials	ainia any/tosting/so		discussion
	Algorithm for Dolynomials is a	Synthetic division –	gilla.gov/lesting/so		
a(x) = a(x) = a(x)	Polynomials is a	polynomials	/m occ o 2h 1 ndf		7
p(a), so $p(a) = 0$ if	of the technique of	Using Remainder	/iii_ess_a-zb_1.pui		,
a factor of $p(x)$	long division in	Theorem to evaluate a			#8
A APR 6 Rewrite	arithmetic	polynomial function			challenge
simple rational	 (Divisor)(Quotient) 	• Use division of			chunchige
expressions in	+ Remainder =	polynomial to rewrite			Mid-
different forms;	Dividend	forms:			Chapter
write a(x)/b(x) in	OR P(x) = D(x)Q(x) +	a(y)/b(y) =			Quiz: pg.
the form $q(x) +$	R(x)	a(x) + r(x)/b(x)			311
r(x)/b(x), where	• If $R(x) = 0$, then $P(x)$				
a(x), b(x), q(x), and	= D(x)Q(x) and $D(x)$				
r(x) are polynomials	and Q(x) are factors				
with the degree of	of P(x)				
r(x) less than the					
degree of b(x),					
using inspection,					
long division, or, for					
the more					
complicated					
examples, a					
computer algebra					
system.					

Lesson 5: Polynomial Models in the Real World

Objective

• Using Ti-84 graphing calculator, SWBAT fit data to linear, quadratic, cubic, or quartic models, ASB correctly answering 5 / 6 exit slip questions.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 4: Model with mathematics
- MP 5: Use appropriate tools strategically

Vocabulary: regression, the (n + 1) Point Principle Common Misconceptions:

- Only one type of model can fit a given data set
- Choosing a model that doesn't *best* fit a data set

CCSS	Concepts What students will know	Skills What students will be able to	Material/ Resource	Suggested Pacing	Assessment Check Point
F.IF.4: For a	Review	Review	Lesson	2 dav	Lesson check pg.
function that	Domain of a function	• Evaluate a function for	5.8		335 #s 1 – 6 (5 &
models a	is all the possible x-	a given coordinate pair			6 challenge)
relationship	values	New			
between two	New	• Use LINREG, QUADREG,			
quantities, and	 You can use 	CUBICREG on Ti-84 to			
sketch graphs	polynomial functions	model data set			
showing key	to model many real-	• Use RREF() function on			
feature given a	world situations. The	Ti-84 to find coefficient			
verbal description	behavior of the graphs	values for polynomial			
of the	of polynomial	function			
relationship.	functions of different				
F.IF.5: Relate the	degrees can suggest				
domain of a	what type of				
function to its	polynomial will best fit				
graph and, where	a particular data set.				
applicable, to the	• For any set of n + 1				
quantitative	points in the				
	coordinate plane that				
	pass the vertical line				
and interpret the	test, there is a unique				
average rate of	at most a that fits the				
change of a	noints perfectly				
function	• The best model for a				
(presented	data set often				
symbolically or as	depends on the				
a table) over a	situation.				
specified interval.	When making				
Estimate the rate	predictions based on a				
of change from a	regression model, stay				
graph.	within domain of the				
A.CED.1: Create	function for greater				
equations and	confidence				
inequalities in one					

Algebra 2 Unit 3			
variable and use			
them to solve			
problems.			

Ideal Math Block

The following outline is the department approved ideal math block for grades 9-12.

- 1) Do Now (7-10 min)
 - a. Serves as review from last class' or of prerequisite material
 - b. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 2) Starter/Launch (5 min)
 - a. Designed to introduce the lesson
 - b. Uses concrete or pictorial examples
 - c. Attempts to bridge the gap between grade level deficits and rigorous, on grade level content
 - d. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 3) Mini-Lesson (15-20 min)
 - a. Design varies based on content
 - b. May include an investigative approach, direct instruction approach, whole class discussion led approach, etc.
 - c. Includes CFU's
 - d. Anticipates misconceptions and addresses common mistakes
- 4) Class Activity (25-30 min)
 - a. Design varies based on content
 - b. May include partner work, group work/project, experiments, investigations, game based activities, etc.
- 5) Independent Practice (7-10 min)
 - a. Provides students an opportunity to work/think independently
- 6) Closure (5-10 min)
 - a. Connects lesson/activities to big ideas
 - b. Allows students to reflect and summarize what they have learned
 - c. May occur after the activity or independent practice depending on the content and objective
- 7) DOL (5 min)
 - a. Exit slip

Sample Lesson Plan

Lesson	2: Polynomials, Linear Factors, and Zeros (Day 2 Lesson)	Days	1			
Objective	Using factored form of a polynomial, SWBAT analyze and	CCSS	F.IF.7.c: Graph polynomial			
	graph the polynomial function, ASB correctly answering 3		functions, identifying			
	/ 3 exit slip questions.		zeros when suitable			
			factorizations are			
			available and showing end			
· · ·			behavior			
Learning	Lesson Material (see					
activities/strategies						
	Do Now: (8 minutes) using graphing calculator					
	"Sketch the graph of $f(x) = x^2$. What will the graph of $g(x) = x^2$	י וססג ווגפי ר	? Sketch it on the same			
	coordinate plane. What will the graph of h(x) = x° look like?					
	Launch - Discussion, Use the graphs from the De New to frame the following discussion shout					
	end behavior.					
	* Ask students to compare and describe the behav	ior of the	value f(x) as the absolute			
	value of x increase without bound.					
	Mini Lesson:					
	* Introduce the term "end behavior"					
	(end behavior is way to describe what happens to the function as x approaches					
	positive and negative infinity without having to draw the graph)					
	* use the picture on material page 166 to help students understand the description of					
	end behavior					
	Investigation: (see material example 1)		6 ((((((((((
	* Tell students that we are now going to look at a new set of functions:					
	Sketch the graph of $f(x) = x^3$. What will the graph of $g(x) = x^3$ look like? Sketch this on					
	the same coordinate plane. What will the graph of $h(x) = x'$ look like? Sketch this on the same coordinate plane.					
	the same coordinate plane. * Ask students share their finding and take notes about their finding					
	Practice 1: (pair work)					
	* Ask students use the notes that they took from t	he investi	gation and work with			
	partners to answer the following questions: (See	material	- page 169)			
	Practice 2: (individual work)					
	* Students will use what they learned today about	end beha	vior to determine whether			
	or not eh polynomial function used to model the	data has	an even or odd degree.			
	(See material page 170)					
	Closure					

	 * Have students summarize the lesson either with a graphic organizer or a written summary. (see material page 171) Exit Ticket: Without using a graphing utility, match each graph with the function. (see material page 172)
Differentiation	Possible differentiation strategies: (please design your own differentiation based on your
	* Heterogeneous grouping to allow for peer mentoring throughout investigation activity
	*Calculators will be provided
Assessment	Formative: *circulating throughout class during lesson,
	*observe students when they are answering questions, discussing with their
	partner, working on class worketc.
	*exit slip
	* homework
Common	
Misconceptions/	
Difficulty	

Supplemental Material

CCSS	Dropbox Location and Filename	Link (Original Task)
A-SSE, A-APR, F-IF, F-BF	Orange 9-12 Math > Algebra 2 > Unit 3 > Supplemental Material > Presenting Polynomials	http://ecsd- fl.schoolloop.com/file/1298972684338/1298972684200/7226566668 305715428.pdf
A.SSE2, A.SSE 3, A-	Orange 9-12 Math > Algebra 2 >	http://www.atlanta.k12.ga.us/cms/lib/GA01000924/Centricity/Doma
APR2, A-APR3, F-IF7	Unit 3 > Supplemental Material >	in/262/CCGPS_Math_III_Unit_2_WEB_IE_August_2010v1.pdf
	Finding roots when degree is	
A-APR.2, A-APR.6	Orange 9-12 Math > Algebra 2 >	http://www.doe.virginia.gov/testing/solsearch/sol/math
	Unit 3 > Supplemental Material >	/A/m_ess_a-2b_1.pdf
	Dividing polynomial using alg.	
	tiles	
A-APR.3, A-APR.6	Orange 9-12 Math > Algebra 2 >	
	Unit 3 > Supplemental Material >	
	Graphing Polynomial Functions	
	Activity	
A-APR.3, A-APR.6	Orange 9-12 Math > Algebra 2 >	
	Unit 3 > Supplemental Material >	
	Polynomials, linear factors, &	
	zero sample lesson	

Algebra 2 Unit 3 PARCC Sample Assessment

Sam uses one-inch frames for pictures for which the length is 2 inches (in.) longer than the width, as shown. Width x in. (x + 2) in. Length The area of the frame for a picture that is x induces wide is given by the expression: (x+4)(x+2) - (x+2)xThere are four descriptions shown. Drag the correct expression to the appropriate box below the corresponding description. *x* (*x*+2) (*x*+4) (x+2)x (x+4)(x+2)the area of the the length of the the area of the the length of the picture and frame picture alone, in picture alone, in frame, in inches together, in inches square inches square inches Click on a choice and drag it to a box.

HS	Picture Frame		
Туре	Type I 2 Points		
Evidence Statement	 A-SSE.1-2: Interpret quadratic expressions that represent a quantity in terms of its context. a) Interpret parts of an expression, such as terms, factors, and coefficients. b) Interpret complicated expressions by viewing one or more of their parts as a single entity 		
Most Relevant Standards for Mathematical Content	 <u>A-SSE.1</u>: Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)ⁿ as the product of P and a factor not depending on P. This standard is major content in the course based on the PARCC Model Content Frameworks. 		
Most Relevant Standards for Mathematical Practice	This task requires students to make use of the structure provided in the diagram and the formula (MP.7). In addition, students must contextualize that structure to address the descriptions (MP.2).		
Item Description and Assessment Qualities	This application task requires students to understand a diagram and formula, and then use expressions within that formula to represent a quantity in terms of its context. The situation allows for possible explanations so students have to carefully attend to the meaning of the variable and the context of the situation. The answer space is technology-enhanced so it can be scored immediately. Unlike traditional multiple choice, it is difficult to guess the correct answer or use a choice elimination strategy.		
Scoring Information	The length of the picture alone in inches: $(x + 2)$ The length of the frame in inches: $(x + 4)$ The area of the picture alone in square inches: $(x + 2)x$ The area of the picture and frame together in square inches: $(x + 4)(x + 2)$ The student must get all 4 parts correct to earn 2 points and 3 parts correct to earn 1 point.		

Graphing from Roots

CCSS: A.APR 2, A.APR3 (No calculator allowed)

Mike is trying to sketch a graph of the polynomial

 $F(x) = x^3 + 4x^2 + x - 6$

He notices that the coefficients of f(x) add up to zero (1 + 4 + 1 - 6 = 0) and says

" This means that 1 is a root of f(x), and I can us this to help factor f(x) and produce the graph."

Part A: Is Mike right that 1 is a root of f(x)? Explain your reasoning.

Part B: Find all roots of f(x).

Part C: Sketch a graph of the function f(x) and show key features of the graph (i.e. zeros, y-intercept, end of behaviors)

Unit 3 Performance Assessment Task (Modeling)

College Fund

When Marcus started high school, his grandmother opened a college savings account. On the first day of each school year she deposited money into the account: \$1000 in his freshmen year, \$600 in his sophomore year, \$1100 in his junior year and \$900 in his senior year. The account earns interest of at the end of each year.

Part A: If r is the annual interest rate of the bank account, at the end of the year the balance in the account is multiplied by a growth factor of x = 1 + r. Find an expression for the total amount of money Marcus receives by the end of each year in terms of x. (Simplify your expressions)

End of 1st year of high school:

End of 2nd year of high school:

End of 3rd year of high school:

End of 4th year of high school:

Part B: When Marcus starts college after four years of high school, he gets the balance of the savings account plus an extra \$500. Suppose that altogether he receives \$4400 from his grandmother. Use appropriate technology to find the growth factor of x.

Part C: What is the annual interest rate r of the bank account?

Part D. How much total interest did the bank account earn over the four years?

Algebra 2 Unit 3 Unit Assessment Question Bank: (See OHS Dropbox file: Algebra 2 U3 Question Bank)

Additional Resources

From pearsonsuccessnet.org

- Find the errors
- Enrichment
- Re-teaching
- Activities, games, and puzzles
- Performance tasks
- Chapter project

Pearson Algebra 2 Common Core Teacher's Edition

Student Resources

From pearsonsuccessnet.org;

- Standardized test prep
- Homework tutors
- Think about a plan
- Student companions

Student workbook