Algebra 2 Unit Plan

Unit 2: Quadratics

ORANGE PUBLIC SCHOOLS 2014 - 2015 OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF MATHEMATICS

Algebra 2 Unit 2: Quadratics **Contents**

Unit Overview	2
Calendar (Honors)	4
Scope and Sequence	6
Assessment Framework	7
Lesson Analysis	8
Ideal Math Block	22
Sample Lesson Plan	23
Supplemental Material	25
Multiple Representations	26
Unit Authentic Assessment	28
PARCC Sample Assessment Items	29
Unit Assessment Question Bank	30
Additional Resources	31
Student Resources	32

Unit 2: Quadratics

Essential Questions

- How are quadratic functions represented in real life situations and what are the different forms of a quadratic function?
- How do you solve a quadratic function?
- How are the real solutions of a quadratic equation related to the graph of the related quadratic function?
- > What are complex numbers and what do they represent in a quadratic function?

Enduring Understandings

- Working with quadratic functions in both standard and vertex form.
- Using quadratic functions to model real life situations
- Finding all types of zeros of a quadratic function from a graph and by solving the equation using factoring, completing the square, and the quadratic formula.
- Understanding what an imaginary number is and how to perform arithmetic operations on complex numbers

Common Core State Standards

Central CCSS

- 1) F-IF-7.a: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Graph linear and quadratic functions and show intercepts, maxima, and minima.
- 2) A-REI-11: Explain why the x-coordinates of the points where the graphs of the equations y = f(x)and y = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations, include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
- 3) A-REI-4.b: Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± b for real numbers a and b.
- 4) F-IF-8.a: Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
- 5) N-CN-7: Solve quadratic equations with real coefficients that have complex solutions
- 6) N-CN-1: Know there is a complex number *i* such that $i^2 = -1$, and every complex number has the form *a* + *bi* and *a* and *b* real
- 7) N-CN-2: Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers

Spiraled CCSS

- 1) A-CED-2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- 2) F-IF-5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
- 3) F-IF-6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Ongoing CCSS

- 1) F-IF-4: For a function that models a relationship between two quantities, and sketch graphs showing key features given a verbal description of the relationship.
- 2) F-IF-9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
- 3) A-SSE-2: Use the structure of an expression to identify ways to rewrite it.

4) A-SSE-1.a: Interpret parts of an expression, such as terms, factors, and coefficients

Algebra 2 Unit 2: Quadratics Calendar (Honors)

		C	October 2014	4		
Sun	Mon	Tue	Wed	Thu	Fri	Sat
			1	2	3	4
5	6	7(HSPA)	8	9 (HSPA) Unit 2 Diagnostic and Task	10 (L 4.1) Quadratic functions	11
12	13 (L 4.2) Standard form of a quadratic function	14 (L 4.3) Modeling with quadratic functions	15 PSAT	16 (L 4.5,) Solving quadratic equations (Day 1)	17 (L 4.5) Solving quadratic equations (Day 2)	18
19	20 (L 4.4) Factoring (Day 1)	21 (L 4.4) Factoring (Day 2)	22 Check up 1 Reteach (Differentiated remediation)	23 (Half day) (L 4.6) Completing the square (Day 1)	24 (L 4.6) Completing the square (Day 2	25
26	27 (L 4.7) The quadratic formula	28 (L 4.8) Complex number	29 Review	30 <mark>Unit 2</mark> Assessment	31 (Half Day) Authentic Task (Flexible day)	31

		C	October 2014	4		
Sun	Mon	Tue	Wed	Thu	Fri	Sat
			1	2	3	4
5	6	7(HSPA)	8 (HSPA)	9 (HSPA)	10 (HSPA)	11
12	13 <u>Unit 2 Diagnostic</u> and Task	14 (L 4.1) Quadratic functions	15 PSAT	16 (L 4.2) Standard form of a quadratic function	17 (L 4.3) Modeling with quadratic functions	18
19	20 (L 4.5,) Solving quadratic equations (Day 1)	21 (L 4.5) Solving quadratic equations (Day 2)	22 (L 4.4) Factoring (Day 1)	23 (Half day) (L 4.4) Factoring (Day 2)	24 Check up 1 Reteach (Differentiated remediation)	25
26	27 (L 4.6) Completing the square (Day 1)	28 (L 4.6) Completing the square (Day 2	29 (L 4.7) The quadratic formula	30 (Half Day) (L 4.8) Complex number	31 Review	1

Noverber 2014							
Sun	Mon	Tue	Wed	Thu	Fri	Sat	
2	3	4	5	6	7	8	
	Unit 2	Authentic	(Reteach)				
	Assessment						
		(Flexible day)					

Algebra 2 Unit 2: Quadratics **Scope and Sequence**

	Overview					
Lesson	Торіс	Suggesting Pacing and Dates				
1	Quadratic Functions (4-1)	1 day: 10/9				
2	Standard form of a Quadratic Function (4-2)	1 day: 10/10				
3	Modeling with Quadratic Functions (4-3)	1 day: 10/13				
4	Solving Quadratic Equations (4-5 and 10-2)	2 days: 10/14 and 10/15				
5	Factoring (4-4)	2 days: 10/16 and 10/17				
6	Completing the Square (4-6)	2 days: 10/20 and 10/21				
7	The Quadratic Formula (4-7)	1 day: 10/22				
8	Complex Numbers (4-8)	1 day: 10/23				

Algebra 2 Unit 2: Quadratics Assessment Framework

Assessment	CCSS	Estimated Time	Format	Graded
Diagnostic/Readiness Assessment	F-IF.4, 5,7,8, 9	1/2 Block	Individual	No
(Beginning of Unit)	A-CED-2, , AREI-4, 11			
	A-SSE-2, 3, N-CN-1, 2, 7			
Assessment Check Up 1	F-IF.4, 5,7,8, 9	1/2 Block	Individual	Yes
	A-REI-4, A-SSE-2, 3			
Unit 2 Assessment	F-IF.4, 5,7,8, 9	1 Block	Individual	Yes
	A-CED-2, , AREI-4, 11			
	A-SSE-2, 3, N-CN-1, 2, 7			
Performance Task	F-IF.4, 5,7,8, 9	1 Block	Individual/Pair	Yes
(Whose ball is higher?)	A-CED-2, , AREI-4, 11		/Group	
	A-SSE-2, 3, N-CN-1, 2, 7			

Lesson 1: Quadratic Functions in Vertex Form

Objectives

• Using the quadratic parent function, students will work individually/in pairs/small group to identify intercepts, maximum/minimum, concavity, vertex, and axis of symmetry to sketch a graph of a quadratic function correctly for out of problems on the daily exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 7: Look for and make use of structure

Vocabulary:

Parabola, Quadratic function, Parent quadratic function, axis of symmetry, zeros, vertex, minimum/maximum, vertex form

Common Misconceptions/Difficulties:

- Connection between concave up or down and if that gives you a maximum or minimum
- Identifying key features when given a table that represents a quadratic function

	Concepts	Skills	Material/	Suggested	Assessment
CCSS	What students will know	What students will be able to do	Resource	Pacing	Check Point
F-IF-4: For a function	Review	Review	Textbook	1 day	Page 198
that models a	• The shape of a	 Describe a real life 	4-1		Lesson
relationship between	quadratic function is a	situation that could			Check #1,
two quantities, and	parabola	represent a parabolic	(TI-84		#3, #6
sketch graphs showing	New	function	graphing		
key features given a	• The vertex is the	New	calculator		
verbal description of the	intersection of the axis	 Identify and write the)		
relationship.	of symmetry and the	equation of the axis of			
	quadratic function	symmetry when given the			
F-IF-7.a: Graph	 The graph of any 	coordinate point of the			
functions expressed	quadratic function is a	vertex			
symbolically and show	transformation of the	 Graph a concave up 			
key features of the	graph of the parent	function arching up and a			
graph, by hand in simple	quadratic function,	concave down function as			
cases and using	$y = x^2$.	arching down.			
technology for more	• The vertex of a function	 Identify whether the 			
complicated cases.	can either be a	graph has a minimum or			
Graph linear and	minimum, giving you a	maximum from a given			
quadratic functions and	concave up graph, or a	table and identify			
show intercepts,	maximum, giving you a	intercepts from the given			
maxima, and minima.	concave down graph.	table.			
	• A table of values for a				
	function can be used to				
	identify the key features				
	of a quadratic function.				

Lesson 2: Standard form of a Quadratic Function

Objectives

• By investigating different representation of quadratic function, students will work individually/in pair/in small group to identify key features and graph a sketch of the function for different representations of quadratic functions correctly for _____ out of _____ problems on the daily exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary:

Standard form, y-intercept, vertex formula

Common Misconceptions/difficulty:

- Correctly using the vertex formula, specifically the negative sign.
- Using table to find the key features of a quadratic graph is a challenge to most students.
- Using appropriate "Window" setting to graph a function on graphing calculators

	Concepts	Skills	Material/	Suggested	Assessment
CCSS	What students will know	What students will be able to do	Resource	Pacing	Check Point
F-IF-4: For a function	Review	Review	Textbook	1 day	Lesson
that models a	Graphing calculators	• Use a graphing calculator	4-2		check pg.
relationship between	can be used to explore	to make a graph for a			206
two quantities, and	functions in standard	quadratic function			#'s: 1, 2,
sketch graphs showing	form	New			3,&6
key features given a	New	 Find the key features for 			
verbal description of the		a quadratic from the			
relationship		graph or a table on			
		graphing calculator			
F-IF-7: Graph functions	Review	Review			
expressed symbolically	• A function can be	Match and compare key			
and show key features	represented multiple	features of the same			
of the graph, by hand in	ways; such as a graph, a	function that are given in			
simple cases and using	table, and an equation	different representations			
technology for more	• A table of values can be	• Create a table of values			
complicated cases.	used to graph a function	using a given equation in			
	that is given in standard	standard form and graph			
	form.	the function			
F.IF.8: Write a function	New				
defined by an	 Standard form of a 	New			
expression in different	quadratic is <i>a</i> x ² + <i>b</i> x + <i>c</i>	 Identify the y-intercept 			
but equivalent forms to	where <i>a</i> describes the	and the concavity of a			
reveal and explain	concavity of the	function and whether or			
different properties of	function and <i>c</i> is the y-	not it while have a			
the function	intercept	maximum or minimum by			
	 All equations of a 	looking at the written			
	function can be	function			
	manipulated into	• Graph functions given in			
	different forms; for a	standard form using the			10

quadratic function the different forms of an equation are standard form, factored form, and vertex form.	 key features; y-intercept and concavity Find the coordinate of vertex from for a quadratic function written in standard form Convert standard form to vertex form by using vertex formula 				
--	---	--	--	--	--

Lesson 3: Modeling with Quadratic Functions

Objectives

• By applying the concept of quadratic function, students will work individually/in pair/in small group to create functions for the problem given and interpret the key features of the function in the context of the problem correctly for _____ out of _____ problems on the daily exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 4: Model with mathematics
- MP 7: Look for and make use of structure

Vocabulary:

Parabola

Common Misconceptions/difficulties:

• Incorrectly setting up scales of the x and y axis in a coordinate plane

CCSS	Concepts	Skills	Material/	Suggested	Assessment
	What students will know	What students will be able to do	Resource	Pacing	Check Point
F-IF-5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	 Review Every function has a set domain (set of x-values) and range (set of y- values) New Domain of a function is determined by the context of the function given and what values make sense to be included in the particular problem Set notation is used to represent domain and range 	 Review Identify the domain and range of given function in table form New Identify domain/range values of quadratic function given the context of the real life problem Correctly use set notation to describe the domain/range of a function 	Textbook 4-3 (Except page 211 Problem #3) Note: Quadratic Regressio n is not included in this lesson.	1 day	Page 212 Lesson check #1, 2, 6
F-IF-4: for a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. A-CED-2: Create equations in two or	 Review When modeling a quadratic function height or a measure of distance is most often represented by the y- values and time is most commonly represented by the x-values New A real life context that compares two quantities that increase to a peak and then decrease or decrease to 	 Review Set up coordinate plane for a specific problem using correct measures and scale on both axis' New Identify types of real life problems that could be presented by a quadratic function *Use key features from a real life problem to graph its parabola and interpret the key features in the context. 	Task: Springbo ard Dive		

Algebra z Offit z. Quau			1	
more variables to	a low and then increase	* Compare key features of		
represent relationships	are represented by	two quadratic function		
between quantities;	quadratic functions	which represented in		
graph equations on	* All key features of a	different ways		
coordinate axes with	quadratic function	*Create quadratic		
labels and scales.	graph represented	equations by using the		
	specific information	data from graphs.		
F-IF-7: Graph functions	from the context of the	(Standard form)		
expressed symbolically	problem			
and show key features				
of the graph, by hand in				
simple cases and using				
technology for more				
complicated cases.				
a. Graph linear and				
quadratic functions and				
show intercepts,				
maxima, and minima.				
F.IF.9: Compare				
properties of two				
functions each				
represented in a				
different way				
(algebraically,				
graphically, numerically				
in tables, or by verbal				
descriptions).				

Lesson 4: Solving Quadratic Functions (Table and Graph)

Objectives

• Using a graphing calculator to make graph/table for the quadratic functions given, students will work individually/in pair/in small group to solve quadratic functions correctly for ____ out of ____ problems on the daily exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary:

Zero of a function, zero-product property, equation editor

Common Misconceptions/difficulties:

- Using an equation that is not in standard form in a graphing calculator
- Forgetting to set the equation equal to zero before entering the equation into a graphing calculator
- Mistaking the y-intercept in a given table for the x-intercepts
- Missing a x-intercept that is not a whole number when looking at a given table

CCSS	Concepts	Skills	Material/	Suggested	Assessment
	What students will know	What students will be able to do	Resource	Pacing	Check Point
A-REI-11: Explain why	Review	Review	Textbook	2 days	Practice
the x-coordinates of the	 The standard form of a 	 Manipulate equations to 	4-5		problems
points where the graphs	quadratic equation is	make sure they are in	(Focus on		pg. 229,
of the equations y= f(x)	$ax^2 + bx + c = 0$	standard form and equal	Problem		#'s: 20,
and y = g(x); find the	 The zeros of a quadratic 	to zero	#2,3,&4.		28, 29, 36
solutions approximately	function are where the	 Identify the zeros of a 	Problem		
, e.g., using technology	function intersects the	function given graph of	#1 can be		
to graph the functions,	x-axis	quadratic functions	used for		
make tables of values,	 The vertex of a 		next		
or find successive	quadratic function is the		lesson		
approximations, include	highest or lowest y-	New	"factorin		
cases where <i>f</i> (<i>x</i>) and/or	value the function	• Use a graphing calculator	g")		
g(x) are linear,	reaches	to find zeros of a given			
polynomial, rational,		quadratic function			
absolute value,	New	• Determine the zeros of a			
exponential, and	 The standard form of a 	function by looking at a			
logarithmic functions.	quadratic equation is	table of a given quadratic			
	calculator ready	function			
	 The vertex of a 	 Correctly identify the 			
	quadratic function is the	type of zeros by looking			
	highest or lowest y-	at the graph or when			
	value the function	given values of the zeros			
	reaches	Correctly identify the			
	 A graphing calculator 	zero of a graph and			
	can be used to calculate	identify the axis of			
	all points of a quadratic	symmetry from a graph			
	function by using the	or given values for the			
	table or looking at the	zeros.			
	graph				
	 A sketch of the graph or 				14

Algebra z Offit z. Quau	4100	 	
	graphing calculator can		
	be used to solve a		
	quadratic equation		
	 The axis of symmetry 		
	the line of symmetry		
	half way in between		
	both zeros.		
	 All quadratic function 		
	have two zeros; they		
	can be standard zeros,		
	repeated zeros, or		
	imaginary zeros.		

Objectives

• Using the zero-product property and factoring skills, students will work individually/in pair/in small group to solve quadratic functions correctly for ____ out of ____ problems on the daily exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary:

Factoring, trinomial, binomial, greatest common factor, prefect square trinomial, difference of two squares, zero-product property

Common Misconceptions:

- Incorrectly using positive and negative signs when factoring into a binomial
- Incorrectly factoring when a is not equal to 1
- Forgetting to use distributive property to check their work

CCSS	Concepts	Skills	Material/	Suggested	Assessment
	What students will know	What students will be able to do	Resource	Pacing	Check Point
A-SSE-2: Use the structure of an	 <i>Review</i> The distributive 	<i>Review</i>Use the distributive	Textbook 4-4,	2 days	Lesson check pg.
expression to identify			4-4, 4-5		221,
ways to rewrite it.	property is used to	property to change a binomial into the	4-5 problem		221, #'s: 2, 4,
ways to rewrite it.	multiply two or more binomials	standard form of a	#1,		# 3. 2, 4, 10, 11
	New	quadratic	practice		10, 11
	• The reverse of	New	p229 #9-		
			μ229 π 9- 17		
	distributive property is factoring	 Identify which method is best to use to factor a 	1/		
	Quadratic functions that	given quadratic functions			
	are perfect squares can				
	be factored in one of				
	two ways; factoring a				
	perfect square trinomial				
	or factoring the				
	difference of two				
	squares.				
A-REI-4.b <mark>:</mark> Solve	Review	Review	Task:		
quadratic equations by	• Factors of a number are	 Identify all factors of a 	Graphs of		
inspection, taking	two numbers that	given number	Quadratic		
square roots,	multiply to that number	 Identify the factors of 	Functions		
completing the square,	• Solving a quadratic	both the a and c terms of			
the quadratic formula,	equation means to find	a quadratic function in	Task:		
and factoring, as	the x-values or zeros of	preparation for using the	Which		
appropriate to the	the function	x-method	Function?		
initial form of the	New	New			
equation. Recognize	• The concept of factoring	 Factor and solve for a 			
when the quadratic	applies the same way to	given quadratic function			
formula gives complex	factoring a trinomial	by using GCF method and			
solutions and write	expression; it is two	x-method			
them as $a \pm b$ for real	factors called binomials	 Factor and solve for a 			
numbers <i>a</i> and <i>b</i> .	that multiply to get the	given perfect square			

	starting trinomial	quadratic by the perfect		
A-SSE.3a: Choose and	 X-method can be used 	square trinomial method		
produce an equivalent	to factor most	or difference of two		
form of an expression to	trinomials. If the	squares method		
reveal and explain	trinomial is a perfect			
properties of the	square the additional			
quantity represented by	methods for factoring			
the expression. Factor a	can be also be applied			
quadratic expression to				
reveal the zeros of the				
function it defines.				

Objectives

• Using the completing the square method, students will work individually/in pair/in small group to rewrite a quadratic function into vertex form and solve the function correctly for ____ out of the 4____ problems on the exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary:

Completing the square, perfect square,

Common Misconceptions:

- Misunderstanding the difference when directions state to solve for the function or change to vertex form
- Incorrectly working with negative signs while manipulating the function
- Forgetting to use the positive and negative values of a number when taking the square root

CCSS	Concepts	Skills What students will be able to do	Material/	Suggested	Assessment
FIE 9 a Use the	What students will know		Resource	Pacing	Check Point
F-IF-8.a: Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	 Review A standard form of a quadratic tells you the y-intercept and concavity of the function A vertex form of a quadratic tells you the coordinate points of the vertex New Completing the square can be used to change a quadratic function from standard form into vertex form in order to find different key features of the function The square root of any number will always be a positive and negative value; both of these values will determine the roots of a given function 	 Review Identify the y-intercept and concavity from a given function in standard form Identify the coordinates of the vertex from a function given in vertex form Use the steps for completing the square to change a function from standard form to vertex form Use the vertex form and standard form of the function to determine key features of the quadratic 	Textbook 4-6 <u>https://w</u> <u>ww.yout</u> <u>ube.com/</u> <u>watch?v=</u> <u>izkd7Tlh0</u> <u>ol</u> (video for using algebra tiles to explain completi ng square method)	2 days	Lesson check pg. 237, #: 9, Practice problems , #'s: 12, 34, & 38
A-REI-4.b: Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula, and factoring, as	 Review Some quadratic functions cannot be factored using x-method because they do not have whole number factors 	 Review Solve given quadratic functions using factoring or GCF methods and identify functions that these methods cannot be used to solve for. 	Task: Throwing Baseballs		

Algebra z Offic z. Quau	alloo			
appropriate to the	New	New		
initial form of the	 One way to factor 	 Use the steps for 		
equation. Recognize	quadratic functions that	completing the square to		
when the quadratic	do not have whole	solve the quadratic		
formula gives complex	number factors is by	function		
solutions and write	completing the square	Always solve for two		
them as $a \pm b$ for real	• Completing the square	roots when solving any		
numbers <i>a</i> and <i>b</i> .	is a process that allows	quadratic function		
	you to factor a			
	completed trinomial			
	square by factoring it as			
	a square of a binomial			
	and then finding the			
	square root.			

Objectives

• Using the quadratic formula, students will work individually/in pair/in small group to identify types of solution/zeros and solve a quadratic function correctly for _____ out of 4_____ problems on the exit slip

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary:

Quadratic formula, discriminant, coefficients , roots of quadratic functions

Common Misconceptions:

- Forgetting the negative in front of the first *b* term in the formula
- Not solving for two roots using the negative and positive values of the square root

	Concepts	Skills	Material/	Suggested	Assessment
CCSS	What students will know	What students will be able to do	Resource	Pacing	Check Point
N-CN-7: Solve quadratic	Review	Review	Textbook	1 day	Lesson
equations with real	 The square root of any 	 Find the square root of 	4-7		check pg.
coefficients that have	number will always be	both positive and			244,
complex solutions	a positive and negative	negative numbers			#'s: 2, 4,
	value; both of these	New			6,&9
	values will determine	• Find the discriminant of a			
	the roots of a given	quadratic function and			
	function	identify whether the			
	New	function has two real			
	• A quadratic function can	zeros, two repeated real			
	have real or imaginary	zeros, or two imaginary			
	solutions	zeros.			
	• The discriminant of a				
	quadratic function can				
	be used to determine				
	what type of solutions the function has				
A-REI-4.b: Solve	Review	Review			
quadratic equations by	Some quadratic	Solve given quadratic			
inspection, taking	functions cannot be	functions using factoring			
square roots,	factored using x-method	or GCF methods and			
completing the square,	because they do not	identify functions that			
the quadratic formula,	have whole number	these methods cannot be			
and factoring, as	factors	used to solve for.			
appropriate to the	New	New			
initial form of the	One way to factor	Substitute the			
equation. Recognize	quadratic functions that	coefficients of the			
when the quadratic	do not have whole	standard form of a			
formula gives complex	number factors is by	quadratic equation into			
solutions and write	using the quadratic	the quadratic formula			
them as $a \pm b$ for real	formula	 Solve a quadratic 			
numbers <i>a</i> and <i>b</i> .	• The quadratic formula	function using the			
	can be used to solve any	quadratic formula			
	quadratic function				

Lesson 8: Complex Numbers

Objectives

Using the quadratic formula and properties of complex numbers, students will work individually/in pair/in small
group to solve a quadratic function with complex roots and perform operations with complex numbers for 3_____
out of ___ problems on the daily exit slip.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 7: Look for and make use of structure
- MP 8: Look for and express regularity in repeated reasoning

Vocabulary:

Imaginary unit, Imaginary numbers, complex numbers, imaginary solutions,

Common Misconceptions/difficulties:

• Some students are confused about $\sqrt{1}$ and $\sqrt{-1}$

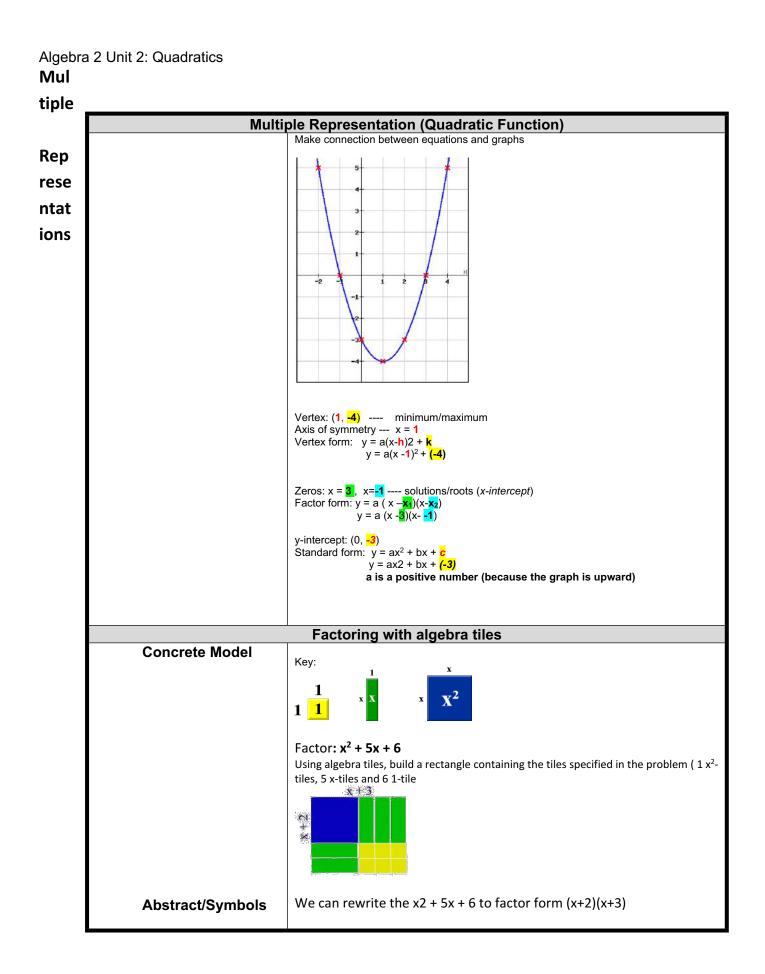
CCSS	Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested	Assessment Check Point
N-CN-7: Solve quadratic equations with real coefficients that have complex solutions	 Review The square root of any number will always be a positive and negative value; both of these values will determine the roots of a given function New A quadratic function can have real or imaginary solutions 	 What students will be able to do Review Find the square root of both positive and negative numbers New Use the quadratic formula to solve a quadratic function with imaginary roots 	Textbook 4-8 (skip problem #2 complex number plane) Note: Complex number plane is not identified by PARCC in algebra 2 test	Pacing 1 day	Lesson check pg. 253, # 7, Practice problems , #'s 10, 18, 39
N-CN-1: Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ and a and b real N-CN-2: Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers	 Review In order to multiply complex numbers you must use the distributive property When adding or subtracting terms with variables you can only combine like terms New When multiplying complex numbers with imaginary parts you must also use the distributive property When adding or subtracting complex 	 Review Use the distributive property to multiply binomials New Use the distributive property to multiply complex numbers with imaginary parts Add and subtract complex numbers with real and imaginary parts Simplify all complex numbers with i² using the relation i² = -1 	Task: Complex number patterns Task: Completi ng Square (with complex number solution)		

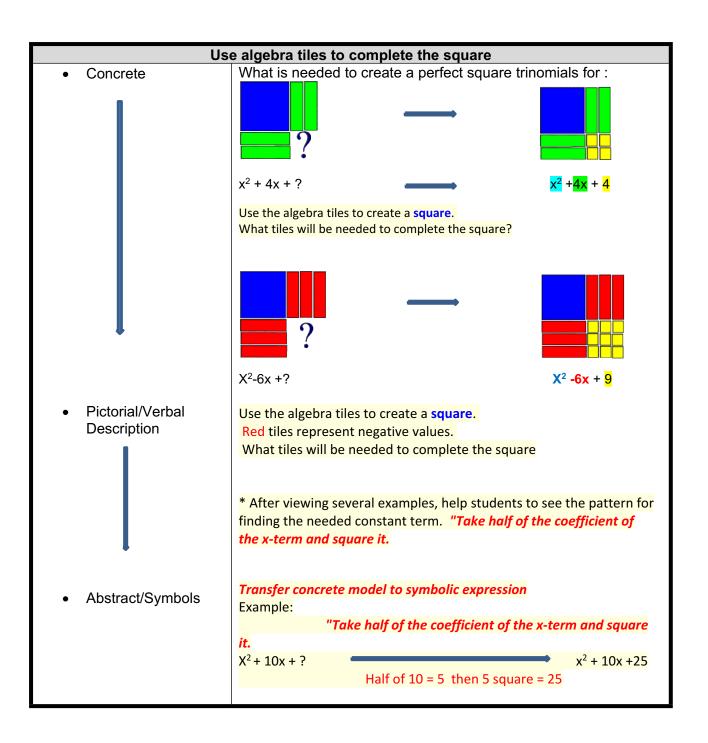
numbers (similarly to	
variables) you can only	
combine real parts with	
real parts and imaginary	
parts with imaginary	
parts	
You can simplify	
complex numbers by	
using the relation $i^2 = -1$	
	variables) you can only combine real parts with real parts and imaginary parts with imaginary parts • You can simplify complex numbers by

Algebra 2 Unit 2: Quadratics Ideal Math Block

The following outline is the department approved ideal math block for grades 9-12.

- 1) Do Now (7-10 min)
 - a. Serves as review from last class' or of prerequisite material
 - b. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 2) Starter/Launch (5 min)
 - a. Designed to introduce the lessona
 - b. Uses concrete or pictorial examples
 - c. Attempts to bridge the gap between grade level deficits and rigorous, on grade level content
 - d. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 3) Mini-Lesson (15-20 min)
 - a. Design varies based on content
 - b. May include an investigative approach, direct instruction approach, whole class discussion led approach, etc.
 - c. Includes CFU's
 - d. Anticipates misconceptions and addresses common mistakes
- 4) Class Activity (25-30 min)
 - a. Design varies based on content
 - b. May include partner work, group work/project, experiments, investigations, game based activities, etc.
- 5) Independent Practice (7-10 min)
 - a. Provides students an opportunity to work/think independently
- 6) Closure (5-10 min)
 - a. Connects lesson/activities to big ideas
 - b. Allows students to reflect and summarize what they have learned
 - c. May occur after the activity or independent practice depending on the content and objective
- 7) DOL (5 min)
 - a. Exit slip


Algebra 2 Unit 2: Quadratics Sample Lesson Plan


Lesson	6: Completing the Square	Days	1/2			
Objective	Using the completing the square method SWBAT rewrite a quadratic function into vertex form and solve the function correctly for 3 out of the 4 problems on the daily exit slip.					
Learning activities/strategies	Do Now: solving for a square root review. Start off with 3 plusing square roots. 1) $x^2 = 25$ 2) $3x^2 - 27 = 0$ 3) $(x - 3)^2$ -Review do now for 5 minutes after time is up.		to practice solving for x			
	Starter/Launch: Getting ready pg. 233					
	Can you write the area of your square in two ways?	x				
	 Have students work on this problem with a partner indeperexplore what the problem is asking. Guiding questions as they are working: "How would you represent a side length of x + 3?" "What does it mean to be a square?" "How many pieces of each kind do you think you may after the class has had time to explore come together as a working the statement of the statement of	ay need t	o create the square?"			
	their explorations. Mini lesson: Completing the square to help solve a quadratic fur	iction usi	ng algebra tiles (example			
	 from page 235). Introduce the idea of (b/2)² being used to complete square trinomial that can be solved. 	the squa	are and create a perfect			
	 Have students work independently or in partners w with them on the smart board to complete the square between factored form and standard form of a quation "Is it easier to solve for an equation in factored form "Why would it be helpful to change a non-perfect so to help us solve the equation?" 	are and e dratic equin or stand	xplore the connection uation. dard form?" "why?"			
	Class activities:					
	 Scavenger Hunt activity to have students walk throus square. Student will work in groups of 2 or 3. Each group with the completing the square method. 					
	• Each step is placed on an index card with numbers a groups have to search for the steps in consecutive c cards in the correct order in order to solve the prob	order and				

<u>/ ligobiu 2 Offic 2. Qu</u>	
	 The first group that solves their problem wins. Once all groups have finished or had the chance to attempt their problem come together as a whole class to review and take notes on the steps to completing the square on the smart board. The example problem that was used in the scavenger hunt will be completed as a whole class to clear up any misunderstandings or mistakes from the earlier activity. Independent Practice: Practice problems as a group; pg. 237, #'s 14, 35, 37, 39, 41, and 45 Closure: Review practice problems and clear up any misunderstandings Notebook check to make sure notes were taken for the day DOL (exit ticket): Lesson check pg. 237, #: 9, Practice problems, #'s: 12, 34, & 38
Differentiation	 3: Modeled examples of each step provided on index card during activity 2: Calculators will be provided 1: Modeled problems to be provided during lesson activity and practice problems to help guide students
Assessment	Formative: results of daily activity, circulating the room during independent practice Summative: Daily exit slip Authentic:
Common Misconceptions	 Misunderstanding the difference when directions state to solve for the function or change to vertex form Incorrectly working with negative signs while manipulating the function Forgetting to use the positive and negative values of a number when taking the square root

Algebra 2 Unit 2: Quadratics **Supplemental Material**

CCSS	Dropbox location and filename	Link (original task and answer key)
F-IF-4	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Throwing Baseballs	https://www.illustrativemathematics.org/illustrations/1279
F-IF.8 A-REI	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Springboard Dive	https://www.illustrativemathematics.org/illustrations/375
F-IF-7 A-SSE	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Graphs of Quadratic Function	https://www.illustrativemathematics.org/illustrations/388
F-IF-8	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Which Functions	https://www.illustrativemathematics.org/illustrations/640
N-CN-1	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Complex Number Patterns	https://www.illustrativemathematics.org/illustrations/722
A-REI-4b N-CN-2	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Completing Square	https://www.illustrativemathematics.org/illustrations/1690
A-REI-4b	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Complete square work sheet	http://www.cabrillo.edu/~mbuchannan/Math%201548%20Webfolder/Math%201548%20Complete%20Square%20Wkst.pdf
A-REI-4b	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Solve Quadratic Equation by Completing Square	http://www.cpm.org/pdfs/skillBuilders/AC/AC Extra Practice Section24.pdf

Algebra 2 Unit 2: Quadratics **Unit Authentic Assessment**

CCSS	Dropbox location and filename	Link (original task and answer key)
F-IF.4, 5,7,8,9 A-CED-2,, AREI-4, 11 A-SSE-2, 3, N-CN- 1, 2, 7	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Whose ball is higher	Adapting from https://www.illustrativemathematics.org/illustrations/1279
F.IF.6 F.IF.9	Orange 9-12 Math > Algebra 2 > Unit 2 > Supplemental Material > Comparing Functions	Adapting from http://www.parcconline.org/samples/mathematics/high- school-functions

SAMPLE ITEM

			SAMPLE I	IEM		
igh Schoo	1	Functions				
Туре		Type I, Claim A F-IF.9. Compare properties of two functions each represented in a				
Most releva	nt	F-IF.9. Compare pro	perties of two	functions each rep	esented in	
		High Sch	ool – F	unctions		
qu in of	the xy - p	the graph of a function $f(x)$ is shown plane. Selected values function $g(x)$ are shown	f(x) (2,9) (0,5) (-1,0) 0	(5,0) x	x g(x) 4 7 1 1 2 -5 5 -11	
		comparison below, use the the realtionship betweeen	the first and the	e second quantity.		
		First Quantity	Comparison	Second Quan	tity	
		The y-coordinate of the y- intercept f(x)		The y-coordinate of the intercept g(x)	у-	
		f(3)	\$	g(3)		
	May	Maximum value of $f(x)$ on the interval $-5 \le x \le 5$ Maximum value of $g(x)$ on the interval $-5 \le x \le 5$		n the		
		$f(5) \cdot f(2)$		g(5) - g(2)		
		5 - 2		5 - 2		
Standard(s) for Mathematical Content	verb and max Also	rent way (algebraically, gra al descriptions). For examp an algebraic expression for imum. relies on knowledge and sl derstand the concept of a f	ple, given a graph another, say wh kills from the firs	of one quadratic functio ich has the larger t cluster in F-IF	n	
Most relevant Standard(s) for Mathematical Practice	MP.0 set o	6 (Attend to precision) - Th of statements involving forr tercept of g(x)").	e task requires tł	ne student to parse a den		
Item descriptio and assessmen qualities	t repr part the t choi	task requires an understan esentations, as well as a nu nature of the task allows fo two functions than a one-po ce, it is difficult to guess the ination strategy.	mber of basic sk or greater depth oint item would.	ills in functions. The mult of comparison between Unlike traditional multip		
Scoring		credit requires selecting th us. Partial credit can be giv			1	

Algebra 2 Unit 2: Quadratics Unit Assessment Question Bank

#	Question	CCSS	SMP
	Orange 9-12 Math > Algebra 2 > Unit 2 > Question Bank		

Algebra 2 Unit 2: Quadratics **Additional Resources**

From pearsonsuccessnet.org; Chapter 4 Find the errors Enrichment Re-teaching Activities, games, and puzzles Performance tasks Chapter project Pearson Algebra 2 Common Core Teacher's Edition

http:PowerAlgebra.com

https://www.illustrativemathematics.org

http://map.mathshell.org.uk/materials/tasks.php?taskid=264&subpage=apprentice

http://www.ccsstoolbox.com/parcc/PARCCPrototype_main.html

http://www.parcconline.org/samples/item-task-prototypes

Algebra 2 Unit 2: Quadratics **Student Resources**

From pearsonsuccessnet.org; Chapter 4

- Standardized test prep
- Homework tutors
- Think about a plan
- Student companions