Chapter 5 Test Review

Identify the Degree and Leading Coefficient, and Describe the end behavior of each function.

1)
$$f(x) = -x^5 + 4x^3 - x + 1$$

Up, down

Find all roots and sketch the graph.

2)
$$(x^2 - 3)^2(x^2 + 3)^2 = 0$$

$$X^{2}-3=0$$
 $X^{2}+3=0$
 $X=\pm \sqrt{3}$ $X=\pm i\sqrt{3}$ Mult. 2

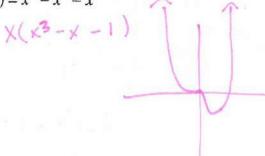
Write a polynomial function in standard form with the given zeros.

$$(x-1)(x-3)(x+2)$$

 $(x^2-4x+3)(x+2)$
 $x^3-4x^2+3x+2x^2-8x+6$
 x^3-2x^2-5x+6

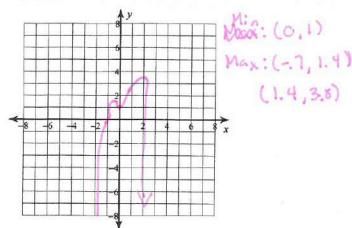
4) 2,
$$\sqrt{6}$$

Find the Zeros of the function. Sketch the general shape of each function. State the multiplicity of multiple zeros and whether they cross or touch the axis.

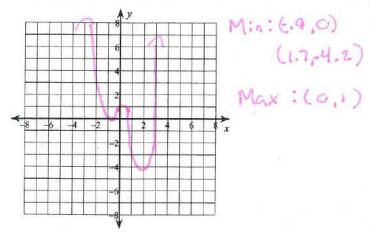

5)
$$f(x) = x^2 + 2x - 1$$

$$X = \frac{-2 \pm \sqrt{4 - 4(-1)^2}}{2} = \frac{-2 \pm \sqrt{8}}{2}$$

$$X = \frac{-2 \pm 2\sqrt{2}}{2}$$


$$(=-\frac{2\pm 2\sqrt{2}}{2})$$
 $(=-\frac{1\pm \sqrt{2}}{2})$
 $(=-\frac{1\pm \sqrt{2}}{2})$

6)
$$f(x) = x^4 - x^2 - x$$



Sketch the graph of each function. Approximate the relative minima and relative maxima to the nearest tenth.

7)
$$f(x) = -x^4 + x^3 + 2x^2 + 1$$

8)
$$f(x) = x^4 - x^3 - 3x^2 + 1$$

Find all roots by factoring.

9)
$$x^{3}-8=0$$

 $(x-2)(x^{2}+2x+4)$
 $x=-2\pm\sqrt{4-16}$
 $x=-1\pm2i\sqrt{3}$
 $x=-1\pm i\sqrt{3}$

10)
$$4x^4 - 25 = 0$$

 $(2x^2 + 5)(2x^2 - 5) = 0$
 $(2x^2 + 5)(2x^2 - 5) = 0$

State if the given binomial is a factor of the given polynomial. Then find all remaining factors.

11)
$$(6x^3 + 21x^2 - 39x + 34) \div (x + 5)$$

Not a factor

State the possible rational zeros for each function. Then find all rational zeros.

12)
$$f(x) = 5x^{3} + x^{2} - 5x - 1$$

C: ± 1
Lc: ± 1 ; ± 5
PRZ: ± 1 , $\pm \frac{1}{5}$
Zeros: ± 1 , $-\frac{1}{5}$

13)
$$f(x) = 2x^3 + 3x^2 - 1$$

 $C: \pm 1$
 $LC: \pm 1, \pm 2$
 $PRZ: \pm 1, \pm 1/2$
 $ZCros: -1, 1/2$

Use Decartes' Rule of Signs to tell about the number of real positive, real negative, and imaginary roots of the function.

14)
$$f(x) = 5x^5 + 10x^4 + 28x^3 + 56x^2 + 15x + 30$$

 $-5x^5 + 10x^4 - 28x^3 + 56x^2 - 15x + 30$

15)
$$f(x) = 5x^5 - 25x^4 + 46x^3 - 230x^2 + 48x - 240$$

Find all zeros. Please include a list of the possible rational zeros, Decartes' Rule of Signs, and any other work necessary to find the roots.

16)
$$f(x) = 3x^5 + 9x^4 - 2x^3 - 6x^2 - 5x - 15$$

3x4-2x2-5=0

 $3x^4 + 3x^2 - 5x^2 - 5$ $3x^2(x^2+1) - 5(x^2+1)$

(x2+1)(3x2-5)

-3-

17)
$$f(x) = 2x^{6} - 5x^{4} - 50x^{2} + 125$$

PR2: $\pm 1, 5, 25, 125, \frac{1}{2}$
 $5/2, \frac{25}{2}, \frac{125}{2}, \frac{125}{2}$
 \times 2 2 2 6 6

$$x^{4}(2x^{2}-5)-25(2x^{2}-5)$$

 $(2x^{2}-5)(x^{4}-25)$
 $(2x^{2}-5)(x^{2}+5)(x^{2}-5)$
 $(2x^{2}-5)(x^{2}+5)(x^{2}-5)$
 $x=\pm\sqrt{5}$ $x=\pm i\sqrt{5}$

SHOW WORK BESIDE EACH PROBLEM!!! NO CREDIT FOR A CIRCLED ANSWER, EVEN IF IT IS CORRECT!!

4. What is the number of real roots of this equation?

$$(x^4 + 1)(x - \sqrt{3}) = 0$$

- A. 1
- B. 2
- C. 4
- D. 5

15. What is the nature of the zeros of the polynomial
$$f(x) = 2x^3 - x^2 - 18x + 9$$
?

- A. 3 real rational
 - B. 3 real; 1 rational and 2 irrational
 - C. 1 real rational, 2 nonreal complex
 - D. 1 real irrational, 2 nonreal complex

$$f(x) = (x^4 - 16)(3x^2 - 21)(4x^2 + 1)$$

- A. 8
- **B.** 6
- C. 4
- D. 2

17. What are the rational zeros for
$$x^3 - 3x^2 - 4x + 12$$
?

- A. +2, 2, 3
- B. -2, 2, -3
- C. 1, 2, 3, 4, 6, 12
- D. ±1, ±2, ±3, ±4, ±6, ±12

Given the polynomial function
$$f(x) = ax^2 - acx^2 - bx^2 + bcx$$
, where a, b, and c are nonzero numbers, find all zeros.

- $A, x = 0, \frac{b}{a}, c$
- **B.** $x = 0, \frac{a}{c}, b$
- C: $x = 0, \frac{a}{h}, c$
- D. $x = 0, \frac{b}{6}, a$

Vhich of the following lists best describes the five complex zeros of the function
$$= 2x^5 + 3x^4 + 11x^3 + 24x^2 - 63x - 27?$$

- A. Three rational, two nonreal
- B. Two rational, one irrational, two nonreal
- C. One rational, two irrational, two nonreal
- D. One rational triple root, two irrational

16.
$$(x^2+4)(x^2-4)$$
 $(4x^2+1)$ $3(x^2-7)=0$
 $(x+2)(x-2)$ $x^2-7=0$
 $x=2$ $x=-2$ $x=-7$

$$= \frac{ab^{3}}{a^{3}} - \frac{acb^{2}}{a^{2}} - \frac{b^{3}}{a^{2}} + \frac{b^{2}c}{a}$$

$$= \frac{ab^{3}}{a^{3}} - \frac{acb^{2}}{a^{2}} - \frac{b^{3}}{a^{2}} + \frac{b^{2}c}{a}$$

$$= \frac{b^{3}}{a^{2}} - \frac{cb^{2}}{a} - \frac{b^{3}}{a^{2}} + \frac{cb^{2}}{a} = 0$$