Algebra 1 (cp) Midterm Review Name: Date: Period: Chapter 1 1. Evaluate the variable expression when j = 4. $\frac{j}{44}$ [1] [1] 2. Evaluate the variable expression when j = 4. $\frac{24}{j}$

[2]

3. Find the perimeter of the rectangle. Then find the area.

[3]

4. Find the area of the triangle.

- [4]
- 5. Write the expression in exponential form. $2 \cdot 2 \cdot 2$

[5]

6. Complete the table.

Power	Base	Exponent	Evaluate
2^{5}			

Power	Base	Exponent	Evaluate
2 ⁵			
	3	4	
			125
r^8			

[6]

- 7. Evaluate the expression for the given value of the variable. x^3 when x = 3
- 8. Evaluate the expression for the given value of the variable. 16 + 12x - x³ when x = 3
 [8]
 9. Evaluate the expression for the given values of the variables. (c)³ + (2g)² when c = 2 and g = 3
 - [9]

10. Evaluate the expression. $6 \cdot 6 - 3$

- [10]
- **11.** Evaluate the expression. $4 \cdot 3^2 5$

[11]

[7]

12. Evaluate the expression. $8 + 8 \cdot 2 - 10 \div 2$

[12]

[13]

13. Evaluate the expression for the given value of the variable. $3y^2 \div 3+7$ when y = 2

14. Evaluate the expression for the given value of the variable. $(y+3)^2 - 40 \div 8$ when y = 4

[14]

15. Evaluate the expression for the given value of the variable. $[(y-2)^2 + 5] \div 3$ when y = 4

[15]

16. Evaluate the expression for the given value of the variable. $[(y+3)^2-9] \div 8$ when y=4

[16]

17. Evaluate the expression for the given values of the variables.

 $\frac{45-1}{x+2y^2\cdot 2}$ when x = 6 and y = 2

[17]

18. Determine whether the following is an expression, an equation, or an inequality. $2x^2 - 6x - 1 = 3$

[18]

19. Check to see if x = 4 is or is not a solution for the equation. $2x+1=8+x \div 4$

[19]

20. Check to see if x = 7 is or is not a solution of the inequality. $5+2x \le 15$

[20]

21. Check to see if x = 2 is or is not a solution of the inequality. $7+3x \le 7x-2$

[21]

22. Check to see if x = 2 is or is not a solution of the inequality. $5x - 2 \ge 7$

[22]

23. Does the input-output table represent a function? If it does represent a function, list the domain and range.

Input	2	3	4	5
Output	12	15	18	21

[23]

24. Does the input-output table represent a function? If it does represent a function, list the domain and range. If it does not represent a function, explain why.

Input	0	2	4	4	6
Output	1	4	7	10	13

[24]

25. Make a table of values for the line y = 2x + 1 using *x*-values of 1, 2, 3, 4, and 5. Graph the line.

Chapter 2

26. Graph –2, 4, –6, and 1 on a number line and determine the order of the numbers.

[30]

31. Find the difference. (-8) - (-2)

32. Find the terms of the expression. -3-4x

33. Find the product. -3(-2)

[33]

34. Find the product. $(-2)^4$

[34]

35. Simplify the expression. -2(-5)(k)

[35]

[31]

[32]

36. Determine whether the statement is *true* or *false*. If it is false, give a counterexample. The product $0 \cdot (n)$ is always 0.

[36]

[37]

37. Evaluate the expression for the given value of the variable. - 4[X+5] - 10 * X / 2 + 30 when X= - 5

38. Use the Distributive Property to rewrite the expression without parentheses. 17x(3x-5)

39. List the like terms in the expression. $-11k-3j^2+6j+4j+8j^2+7k$

[39]

40. Simplify the expression. 8x + 6 + 4x - 4

[40]

Page 10

[38]

- **41.** Simplify the expression. 3x+7-3x+4
- [41] ______ 42. Simplify the expression. 7x + 4(x + 3)[42] _____ 43. Simplify the expression. 90 - 15(X+1) + 5(X+1)[43] _____ 44. Find the quotient. $40 \div (-5)$ [44] _____
- **45.** Evaluate the expression for the given value(s) of the variable(s). $\frac{v-12}{4}$ when v = 20

[45]

46. Evaluate the expression for the given value(s) of the variable(s).

 $\frac{x}{y}$ when x = 20 and y = -5

47. Simplify the expression. $\frac{42f - 24}{6}$

[47]

[46]

48. Simplify the expression. 28×14

 $\frac{28x-14}{7}$

[48]

Chapter 3

49. Solve the equation.

$$\frac{5}{4}x = 40$$

50. Solve the equation.

$$\frac{x}{5} = 3$$

51. Solve the equation. 4x + 8 = 21

[51]

52. Solve the equation. 2x - |-5| = 23

[52]

[49]

[50]

53. Solve the equation. 2n+18-4n = 34

[53] ______ 54. Solve the equation. 5n-2(n-2) = -11 [54] ______ 55. Solve the equation. $\frac{8}{18}y - 40 = 0$ [55] ______ 56. Solve the equation. $-\frac{21x}{7} - 5x = 24$

[56]

57. Solve the equation. 6z + 3 = 8z - 5

[57]

58. Solve the equation.

5x + 14 - 2x = 9 - (4x + 2)

[58] ______ 59. Solve the equation. 7z+5=9z-3 [59] _____ 60. Solve the equation. 4+3(x-1)=2(x-2) [60] _____

61. Solve the equation.

 $\frac{1}{4}(4x+16) = 3 + 2(2-x)$

[61]

Chapter 4

62. Write the ordered pairs that correspond to the given points.

[62]

63. Plot the given points in a coordinate plane. State the location for each point (4, 0), (-2, -3), (3, 1), and (-2, 2)

64. Rewrite the equation in function form. -4x + y = 16

[64]

65. Find four solutions of 2x + y = 7.

[65]

66. Complete the table. Then graph the equation.

-2	U	\angle	4

67. Graph the equation.

x = -8

68. Write the equation for this graph.

у/ 10	Ν									
10.	ŀ·	•	•	•	•	•	•	•	•	
-	ŀ٠	•	•	•	•	•	•	•	•	
•	ŀ٠	•	•	•	•	•	•	•	•	
-	t۰		•	•	•	•	•		•	
-	t .	•	•	•	•	•	•		•	
-	r :	•				•			•	
	[]		2	2	÷					
	[]									
	Ļ.									
	\vdash	-+	+	+	+		L	- 1		\geq
0									10	x

[68]

69. Write the equation of the horizontal line passing through the point (4, 7).

[69]

70. Write the equation for the vertical line passing through the point (-5, 2).

[70]

71. Sketch the graphs of x = -4 and y = -4. Find the point at which the two graphs intersect.

72. Find the *x*-intercept of the line 3x - y = -3.

[72]

73. Find the *x*- and *y*-intercepts of the line 3x + 4y = -12.

[73]

74. Graph the linear equation by finding the *x*- and *y*-intercepts. 2x - y = -2

75. Plot the points and find the slope of the line passing through the points (3, -5) and (5, 4).

76. Find the slope of the line passing through the points A(-2, 9) and B(1, -3).

[76]

77. Find the slope of the line that contains (-4, -3) and (-3, -3).

[77]

78. Find the slope of the line through the points (1, -3) and (-1, 7).

[78]

79. Find the slope of the line through the points (4, 7) and (-6, 2).

[79]

80. Give the slope of the line that contains (6, 4) and (6, 6).

[80]

81. Graph the equation $y = -\frac{3}{2}x$.

82. Rewrite the equation in slope-intercept form. 8x - 3y - 5 = 0

[82]

83. Find the slope and *y*-intercept of the line. 6x - 3y = 54

[83]

84. Solve for *y*. 4x - 5y = 0

[84]

85. Write in slope-intercept form and sketch the line.

3x - y = 2

Chapter 5

86. Solve for y in 6x + 2y = 3. Determine if the line is parallel to $y = -\frac{7}{2}x - \frac{5}{8}$.

[86]

87. Find the slope and y-intercept of the line y = 5x + 4. Is the line parallel to $y = \frac{1}{5}x + 4$?

[87]

88. Find the slope and y-intercept of the line $y = 18x - 1^{-1}$. Is the line parallel to $y = -18x - 10^{-2}$?

[88]

89. Is the relation $\{(-1, -3), (-1, 2), (2, -4)\}$ a function?

[89]

90. Decide whether the information defines a function. If it does, state the domain of the function.

input	0	1	2	3	4
output	1	2	3	2	1

[90]

[91]

91. Find f(-2) given $f(x) = 3x^2 + 2x + 10$. Then find f(0) and f(1).

93. Determine whether the following graph represents a function.

[93]

94. Complete the function table. Then graph the function. f(x) = 1/2X - 4 with the domain -4, 0, and 4. Then state the range.

95. Write in slope-intercept form the equation of a line having slope -7 and y-intercept 7.

97. Write in slope-intercept form the equation of the line.

$$m=\frac{2}{3}, \ b=4$$

[97]

98. Write an equation of the line shown in slope-intercept form.

[98]

99. Write an equation of the line shown in slope-intercept form.

[99]

100. Write an equation in point-slope form of the line. Then rewrite the equation in slope-intercept form.

The line that passes through the point (-2, 3) and has the slope $\frac{2}{3}$.

[100]

101. Use the point-slope form to write an equation of the line that passes through the given point and has the given slope.

$$(-7, 1), m = \frac{1}{2}$$

[101]

102. Use the point-slope form to write an equation of the line that passes through the given point and has the given slope.

$$(5, -7), m = \frac{3}{5}$$

[102]

103. Write in slope-intercept form the equation of the line that is parallel to the line in the graph and passes through the given point.

[103]

104. Write an equation for the line containing (-5, -18) and (-6, -23).

[104] _____

105. Write in point-slope form the equation of the line that passes through the points (4, -4) and (3, 1). Use (4, -4) as the point (x_1, y_1) .

[105]

106. Write an equation of the line shown on the graph.

[106]

107. Write the equation of the line in slope-intercept form that passes through the given points. (-3, 5) and (2, -5)

[107] _____

108. Write the equation of the line in standard form. Use integer coefficients.

$$y = -\frac{4}{7}x - \frac{2}{7}$$

[108]

109. Write the equation of the line in standard form. Use integer coefficients. $y = \frac{2}{3}x - 4$

[109]

110. Determine whether the lines are perpendicular.

$$y = 4x + 3$$
, $y = -4x - \frac{1}{3}$

[110] _____

111. Determine whether the lines are perpendicular. y=1/2 x - 7, y = -2x + 10

[111] ______

112. Find the slope of a line perpendicular to the line y = -4x + 3.

[112]