1.4 Absolute Values

Solving Absolute Value Equations By putting into one of 3 categories

What is the definition of "Absolute Value"?

Mathematically,
$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

For example, in |x| = 3, where could x be?

To solve these situations,

$$|3x-2|=10$$
 Consider

That was Category 1

Category 1 : _____

$$|x| = a \implies$$

ExampleCase 1Case 2

$$|x+5| = 3$$

Absolute Value Inequalities

Think logically about another situation.

What does $|x| \le a$ mean?

For instance, in the equation $|x + 6| \le 5$,

How does that translate into a sentence?

Now solve for x.

This is Category 2: when x is less than a number

$$|x| \le a \implies \underline{\hspace{1cm}}$$

Absolute Value Inequalities

What does $|x| \ge a$ mean?

In the equation $|2x+1| \ge 11$,

$$|x| = a \implies$$

$$|x| \le a \implies$$

Less than = And statement

$$|x| \ge a \implies$$

Greater than = Or statement

Note: is the same as ; is the same as ≡; just have the sign in the rewritten equation match the original.

Isolate Absolute Value

•

$$3|x+5|=12$$

•

$$|x+5| = 4$$

•

When x is on both sides

$$|3x+4| = x-3$$

•

•

Case 1Case 2

Example inequality with x on other side

$$|2x-1| \le 5-x$$

Case 1Case 2

Examples

1.
$$|2x+4|=24$$

Case 1 Case 2

2.
$$|x+6| \le 9$$

Case 1 Case 2

3.
$$|2x+1| > 11$$

Case 1 Case 2

4. $2-5|x-5| \ge 27$

Whats wrong with this?

5. |3x-9| < 10

6.
$$-4\left|-\frac{1}{2}x+2\right| \le -8$$

7. $|3x+4| \ge 2x+6$

8. |x+2| < x = 7

1-4 Compound Absolute Values Equalities and Inequalities

More than one absolute value in the equation

Some Vocab

- Domain-
- Range-
- Restriction-

$$\frac{x+2}{x-4} = 5$$

Find a number that works.

$$|x+2|+|x-1|>6$$

We will find a more methodical approach to find all the solutions.

In your approach, think about the values of this particular mathematical statement in the 3 different areas on a number line.

$$|2x+2|+|x-5|>9$$

It now forms 3 different areas or cases on the number line.

$$|2x+2|+|x-5|>9$$

•

•_____

Case 1 Domain $x \ge 5$

Case 2 Domain $-1 \le x \le 5$

Case 3 Domain $x \le -1$

Final Answers

•_____

•

If you get an answer in any of the cases where the variable disappears and the answer is TRUE

$$|3x-6|+|x+2|>12$$

$$\frac{\left|\mathbf{X}-\mathbf{2}\right|}{\left|\mathbf{X}+\mathbf{4}\right|} \geq 5$$

$$|2x+1|+|x+5|>1$$

1-5 Exponential Rules

You know these already

Review of the Basics

1.
$$a^m a^n =$$

$$5 \cdot \left(\frac{a}{b}\right)^m = \underline{\hspace{1cm}}$$

2.
$$a^m \div a^n =$$

6.
$$a^{o} =$$

3.
$$(a^m)^n =$$

7.
$$a^1 =$$

4.
$$(ab)^n =$$

8.
$$a^{-n} =$$

Practice problems

Simplify each expression

1.
$$x^9 \cdot x^3 =$$
; $\frac{x^9}{x^3} =$; $\frac{x^3}{x^9} =$

2.
$$4^{n} \cdot 4^{n-7} =$$

3.
$$\left(\frac{2}{5}\right)^{-3} = 4. \left(\left(\frac{1}{3}\right)^3\right)^{-3} =$$

$$5 \cdot \frac{3x^{-3}y^2}{2^{-1}x^2y^{-5}}$$

6.
$$(-3)^2(-2)^3$$

7.
$$(-2x^3y)^2(-3x^2y^2)^3$$

8.
$$\frac{(x^4y^3)^2}{(x^{-5}y^3)^3}$$

9.
$$-7(x-3y)^{-8}(12y-4x)$$

10.
$$\frac{2^{5x-9}}{2^{5x-12}}$$

11.
$$4 \cdot 2^{x} + 4 \cdot 2^{x}$$

12.
$$3^{x} \cdot 3^{x+4} = 81$$

Do NOT use calculators on the homework, please!! ©

1-6 Radicals (**Day 1**) and Rational Exponents (Day 2)

What is a Radical?

In simplest term, it is a square root $(\sqrt{})$

$$\sqrt{} = \underline{}$$

The Principle nth root of a:

1.
$$\sqrt[n]{\Omega} - \Omega$$

1. $\sqrt[n]{0} = 0$ If a < 0 and n is odd then is a negative $\sqrt[n]{a}$

number

If a < 0 and n is even,

Vocab

$$\sqrt[n]{a}$$

Lets Recall

$$\sqrt{x^2} =$$

$$\sqrt{x^4} =$$

$$\sqrt{x^{20}} = \underline{\hspace{1cm}}$$

$$\sqrt[3]{x^3} =$$

$$\sqrt[3]{x^6} =$$

$$\sqrt[3]{x^{33}} =$$

$$\sqrt[5]{x^5} =$$

$$\sqrt[5]{x^{10}} =$$

$$\sqrt[5]{x^{60}} =$$

Rules of Radicals

1.
$$\sqrt[n]{a} \cdot \sqrt[n]{b} \Leftrightarrow \underline{\hspace{1cm}}$$

2.
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} =$$

3.
$$\sqrt[m]{\sqrt[n]{a}} =$$

Practice problems

Simplify each expression

1.
$$\sqrt{20}$$

2.
$$\sqrt[3]{81}$$

$$3. \sqrt[3]{3^{17}}$$

4.
$$\sqrt[3]{4} \cdot \sqrt[3]{4}$$

5.
$$\sqrt[3]{\sqrt{64}}$$

6.
$$\sqrt{50} + \sqrt{72}$$

7.
$$3\sqrt{27x^2} + 7\sqrt{12x^2}$$

8.
$$\sqrt[3]{\frac{1}{24}} \cdot \sqrt[3]{-81x^6}$$

1-6 Radicals (Day 1) and Rational Exponents (**Day 2**)

Don't be overwhelmed by fractions!

These problems are not hard, as long as you remember what each letter means. Notice I used "p" as the numerator and "r" as the denominator.

p=			
•			

r= _____

Practice problems

Simplify each expression

1.
$$\frac{9^{\frac{1}{2}}}{27^{\frac{1}{3}}}$$

$$2. \left(\frac{1}{36}\right)^{-\frac{1}{2}}$$

$$3. \ 4^{-\frac{3}{2}}$$

4.
$$(-8)^{\frac{2}{3}}$$

$$5 \cdot \left(\frac{16x^4}{y^{-8}}\right)^{\frac{3}{4}}$$

6.
$$(243)^{\frac{2}{5}}$$

The last part of this topic

What is wrong with this number?

$$\frac{1}{3^{\frac{1}{2}}}$$

Rationalizing

If you see a single radical in the denominator

$$7. \ \frac{6}{\sqrt{8}}$$

8. $\frac{6}{\sqrt[3]{2}}$

Rationalizing

If you see 1 or more radicals in a binomial, what can we do?

10.
$$\frac{7}{\sqrt{6}-\sqrt{5}}$$

11.
$$\frac{5}{5+\sqrt{18}}$$

What is a Conjugate?

The conjugate of a + b	Why?
The conjugate	

Rationalizing

Multiply top and bottom by the conjugate! Its MAGIC!!

10.
$$\frac{7}{\sqrt{6}-\sqrt{5}}$$

11.
$$\frac{5}{5+\sqrt{18}}$$

12.
$$\frac{6}{\sqrt{3}} + \sqrt{75} - 3\sqrt{3}$$

13.
$$\left(\frac{1}{8} + \frac{1}{27}\right)^{\frac{1}{3}}$$

1.7 Fundamental Operations

Terms

Monomial ______

Binomial ______

• Trinomial _____

Standard form:

$$x^3 + 4x^2 + x + 7$$

Collecting Like terms

$$5x^3 + 7x^2 - x - 3 - 4x^3 - x^2 - x + 6$$

F_____O___

$$(3x+2)(2x-5)$$

Examples

$$(x^2-3x+5)(2x^3+x^2-3x)$$

1-8 Factoring Patterns

What is the first step??

Why?			

Perfect Square Trinomial

Factors as

Difference of squares

Sum/Difference of cubes

3 terms but not a pattern?

This is where you use combinations of the first term with combinations of the third term that collect to be the middle term.

$$6x^2 - 10x - 4$$

4 or more terms?

$$x^4 + 3x^3 - 8x - 24$$

Examples

$$9x^2 - 4y^2 \longrightarrow$$

$$(x+y)^3+1$$

$$x^6 - y^6 \longrightarrow$$

Solve using difference of Squares

$$5x-7 \longrightarrow$$

$$16y - 5x^2 \longrightarrow$$

Solve using sum of cubes

$$27x+1 \rightarrow$$

Examples of Grouping

$$a^{2}-2b+2a-ab$$

$$a^2 - 4a + 4 - y^2$$

$$a^3 + 6a^2 + 12a + 8$$

$$4x^5 - x^3 + 108x^2 - 27$$

1.9 Fundamental Operations

What are the Fundamental Operations?

Addition, Subtraction, Multiplication and Division

We will be applying these fundamental operations to rational expressions.

This will all be review. We are working on the little things here.

Simplify the following

Hint:			

1.
$$\frac{x^2 - 9x + 20}{x - 4}$$

2. What is the domain of problem 1?

5. $\frac{3x^2 - 10x + 3}{3x^2 - 13x + 12} \cdot \frac{3x^2 + 17x - 28}{x^2 - 49}$

6.
$$\frac{x^2 - 1}{x^3 - 1} \div \frac{x + 1}{x^2 + x + 1}$$

7.
$$\frac{4}{x^3-1} + \frac{7}{x^2-1}$$

9.
$$\frac{x^4 + 3x^2 - 2x - 2}{x - 1}$$

Lets Watch.

Polynomial Long Division

$$(x-1)x^4 + 0x^3 + 3x^2 - 2x - 2$$

Polynomial Long Division

$$2x+1$$
 $4x^3+0x^2+0x-1$

Classwork

1.
$$\frac{\frac{x+2}{x+3}}{\frac{x+5}{(x+3)^2}}$$

2.
$$\frac{x^{-}-y^{-}}{\frac{1}{x}-\frac{1}{y}}$$

1-10 Introduction to Complex Numbers

What is a complex number?

To see a complex number we have to first see where it shows up

Solve both of these

$$x^2 - 81 = 0$$
 $x^2 + 81 = 0$

Um, no solution????

$$x = \pm \sqrt{-81}$$
 does not have a real answer.

It has an "imaginary" answer.

To define a complex number _____

This new variable is " i "

Definition: $i = \sqrt{-1}$

Note: $\sqrt{-1}$

So, following this definition:

And it cycles....

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$\mathbf{i}^3 = -\mathbf{i}$$

$$i^4 = 1$$

Do you see a pattern yet?

What is that pattern?

We are looking at the remainder when the power is divided by 4.

Why?			

Try it with

Hints to deal with i

1.			
2.			
•			

Examples

1.
$$\sqrt{-36} \cdot \sqrt{-81}$$

2.
$$\sqrt{-36} + \sqrt{-81}$$

OK, so what is a <u>complex</u> number?

A complex number comes in the form

a + bi

Lets try these 4 problems.

1.
$$(8+3i)+(6-2i)$$

2.
$$(8+3i)-(6-2i)$$

3.
$$(8+3i)\times(6-2i)$$

5. 6i⁻⁵

6.
$$\frac{6-i}{4} + \frac{5}{2+i}$$

Try on your own

7.
$$\mathbf{i}^{23} + 2\mathbf{i}^{13} - 3\mathbf{i}^{16}$$