Alg2/Trig Daily Review

Set A

If $\sin \beta = \frac{2}{5}$ then $\cos(2\beta) =$

 $(1)\frac{1}{5}$

2.

If the sum of 4-2i and -7+8i were plotted in the complex plane, the result would fall in which of the following quadrants?

(1)I

(3) III

(4) IV

The solution set to the quadratic inequality $4x^2 + 7x - 2 \le 0$ is

- (1) $\left\{ x \mid -2 \le x \le \frac{1}{4} \right\}$ (3) $\left\{ x \mid x < -3 \text{ or } x > 1 \right\}$
- (2) $\{x \mid -3 < x < 1\}$ (4) $\{x \mid x \le -2 \text{ or } x \ge \frac{1}{4}\}$

4.

The largest solution, to the nearest degree, of the equation $5\sin^2 x + 9\sin x - 2 = 0$ on the interval $0^{\circ} \le x \le 360^{\circ}$ is which of the following?

 $(1) 12^{\circ}$

- (2) 278°

(4) 212°

5.

Solve the equation shown below for all values of x in simplest radical form.

$$x^2 - 2x - 6 = 0$$

6.

The smallest root of $x^4 + 2x^3 - 8 = 0$ is approximately

- (1) -2.5
- (3) -3.8

(2) 1.7

(4) 4.6

7.

A quadratic function of the form $y = ax^2 + bx + c$ has a leading coefficient, a, that is positive and a turning point at (-6, -2). Which of the following represents the range of the quadratic function?

- $(1) \left[-2, \infty \right)$
- $(3) (-\infty, -2)$
- $(2) \left[-6, \infty \right)$
- $(4) (-6, \infty)$

8.

Which of the following represents the inverse of y = 5x - 30?

- (1) y = -5x + 30 (3) $y = \frac{1}{5}x + 30$
- (2) $y = -\frac{1}{5}x 6$ (4) $y = \frac{1}{5}x + 6$

9.

The value of sin100° can be expressed equivalently as

- $(1) 2 \sin 50^{\circ}$
- $(3) 2\sin 50^{\circ} \cos 50^{\circ}$
- (2) $\sin 50^{\circ} + \cos 50^{\circ}$
- (4) $\cos^2 50^\circ \sin^2 50^\circ$

10. Find the sum of the complex numbers -4+i and 2+3i. Express your answer in a + bi form and then plot the result on the complex plane below.

Set C

11.

Which of the following quadratics would have roots that sum to -3?

(1)
$$3x^2 - 2x + 1 = 0$$
 (3) $5x^2 + 15x - 2 = 0$

$$(3) 5x^2 + 15x - 2 = 0$$

(2)
$$x^2 - 3x + 8 = 0$$
 (4) $2x^2 + 8x - 1 = 0$

$$(4) 2x^2 + 8x - 1 = 0$$

12.

Which of the following represents the range of the function $y = -4\sin(x) + 6$?

$$(3)[-10,2]$$

$$(4)(-10,2)$$

13.

A function, y = f(x), has a y-intercept of 7. What is the y-intercept of the function y = 3f(x) - 10?

$$(3) -9$$

$$(2) -2$$

$$(4) -10$$

14.

An angle is drawn in standard position. If its terminal ray lies in the lies in the second quadrant and intersects the unit circle at an x-coordinate of $x = -\frac{1}{4}$, then the y-coordinate of intersection is

(1)
$$y = \frac{3}{4}$$

(3)
$$y = \frac{\sqrt{15}}{4}$$

(2)
$$y = -\frac{\sqrt{3}}{2}$$
 (4) $y = -\frac{1}{2}$

(4)
$$y = -\frac{1}{2}$$

15.

For a particular real number a and base b it is known that $\log_b a = 2.75$. Determine the value of $\log_b \left(a^3\right)$.

Set D

16.

Which of the following sets gives the x-coordinates where the parabola $y = x^2 + 4x - 50$ and the line y = 7x - 10 intersect when drawn in the coordinate plane?

- $(1) \{-5, 8\}$
- $(3) \{-10, 4\}$
- $(2) \{-2,12\}$
- $(4) \{0, 25\}$

17.

The complex fraction $\frac{\frac{1}{2} + \frac{3}{x}}{\frac{1}{2} - \frac{1}{2x}}$ can be simplified as

- $(1) \frac{6x+1}{x}$
- (3) $\frac{x+6}{x-1}$
- $(2) \frac{6+x}{x}$
- (4) $\frac{x+3}{x}$

18.

Which of the following values of x solves: $6^{2x-1} = 36^{-x}$?

(1) -4

(3) $\frac{1}{4}$

(2) $\frac{1}{3}$

(4) 4

19.

Which of the following inequalities represents the graph shown below?

- (1) $y > x^2 4$ (3) $y \le 4 x^2$

20.

Solve the following equation for all value(s) of x: |x+3| - 9 = 2x.

Set E

21.

The solution set to the equation $x - \frac{10}{x} = 3$ is

- $(1) \{-2, 5\}$
- $(3) \{0, 6\}$
- $(2) \{-1, 10\}$
- $(4) \{-4, 2\}$

22.

Written in simplest radical form $\sqrt{-147}$ is equal to

- $(1) -7\sqrt{3}$
- (3) $3i\sqrt{7}$
- $(2) -3\sqrt{7}$
- (4) $7i\sqrt{3}$

4

We'll do

23.

A circle whose diameter is 4 inches has a central angle measuring $\frac{\pi}{8}$ radians that intersects its circumference. Which of the following gives the length of the arc that is subtended by this angle?

- (1) $\frac{\pi}{4}$ inches
- (3) $\frac{\pi}{2}$ inches
- (2) $\frac{4}{\pi}$ inches
- (4) $\frac{32}{\pi}$ inches

24.

The rational expression $\frac{2x^2-9x-5}{3x^2-13x-10}$ can be simplified to

- (1) $\frac{2x+3}{x-7}$
- (3) $\frac{x-5}{3x+1}$
- (2) $\frac{2x-5}{3x+2}$
- $(4) \ \frac{2x+1}{3x+2}$

4

25.

Combine and simplify the following subtraction.

$$\frac{8}{x^2 + 2x - 3} - \frac{6}{x^2 + 3x}$$

$$\frac{2}{\chi(\chi - 1)}$$

DX+1 X(X+3)(X+1) 26.

Which of the following quadratics would have the roots $1 \pm \sqrt{2}$?

(1)
$$x^2 + 3x - 6 = 0$$

(3)
$$2x^2 + x + 1 = 0$$

(2)
$$x^2 + 2x + 1 = 0$$
 (4) $x^2 - 2x - 1 = 0$

$$(4) x^2 - 2x - 1 = 0$$

27.

Which expression is equivalent to $\frac{1}{x} - \frac{1}{x-1}$?

$$(1) \ \frac{2x}{x-1}$$

(3)
$$\frac{-1}{x^2 - x}$$

(2)
$$\frac{1}{2x-1}$$

(4)
$$\frac{2x-1}{x^2-1}$$

28.

For $h(x) = \sin(2x) + \cos x$ what is the value of $h(30^\circ)$?

(1) 1

(3) $\sqrt{3}$

(2) $\sqrt{2}$

(4) $2\sqrt{3}$

29.

Upon completing the square, the trinomial $x^2 + 10x + 2$ would be written as

$$(1)(x-5)^2-4$$

$$(3) (x+10)^2 - 78$$

(2)
$$(x-10)^2-5$$

$$(4) (x+5)^2-23$$

30.

Algebraically determine the intersection point(s) of the two logarithmic functions given below

hint:

$$y = \log_3(x - 6)$$
 and $y = 3 - \log_3 x$

to do algebraically, put logs together on 1 side + think of the log property

log A + log B = log AB

(or hint: Solve graphically in calculator)

Using change of base formula.

Set G

31.

Which of the following is the exact value of csc 60°?

 $(1)\frac{1}{2}$

(3) $\frac{2\sqrt{3}}{3}$

- (2) $\frac{\sqrt{5}}{2}$
- $(4) \frac{\sqrt{3}}{2}$

32.

When the fractions $\frac{5}{x-3}$ and $\frac{15}{3-x}$ are summed, the result is

- (1) $\frac{15}{x^2-9}$
- (3) -6
- (2) $\frac{-10}{x-3}$
- (4) 5

33.

Written in factored form, the expression $x^3 - x^2 - 25x + 25$ is

- (1) (x-3)(x+5)(x-1) (3) (x-5)(x+5)(x-1)
- (2) (x+25)(x+1)(x-1) (4) (x+5)(x+5)(x+1)

34.

Which of the following values of x solves: $\log_3(2x-5) = 2$?

(1)7

(3) -5

(2) 6.5

(4) -11

35.

What value(s) of x are *not* in the domain of $h(x) = \frac{x+6}{2x^2+x-1}$? Justify your answer.

******* Start here Finished etext Practice Tests 1 & 2

Which of the following sets represents all solutions to the equation 5|x-7| = 30?

- $(1) \{\pm 1\}$
- $(3) \{-2,11\}$

 $(2) \{\pm 8\}$

(4) $\{1, 13\}$

Set

1.

A quickly decaying radioactive substance loses 12% of its radioactive mass each hour. If a sample of the substance originally contains 500 grams of radioactive mass, after how many hours, to the nearest hour, will the sample contain only 50 grams of radioactive mass?

- (1) 9 hours
- (3) 14 hours
- (2) 11 hours
- (4) 18 hours

2.

Find the larger root of $2x^2 - 11x + 3 = 0$ to the nearest *tenth*.

The function y = f(x) is shown below. On the same axes, sketch an accurate graph of $y = \frac{1}{2}f(x)$.

Given that $\sin \theta = \frac{\sqrt{7}}{3}$ determine the value of $\cos(2\theta)$ in simplest form.

Given below is the domain $\{-5, 0, 5\}$. Show how this set gets mapped to a range by the function $f(x) = x^2$ and explain why this function is *not* one-to-one.

Domain of f

-5

0

5

Determine the equation for the inverse of $y = \frac{3}{7}x + 9$ in simplest y = ax + b form.

Express the following complex calculation in simplest a + bi form. Show the work that leads to your answer.

$$(2+3i)(4-2i)-i(-4+i)$$

Find all complex solutions, in simplest a + bi form, to the following equation.

$$\frac{19}{x^2} + 1 = \frac{8}{x}$$