Mr. Hollen

Algebra 2

Packets #17-21

Functions

A relation pairs inputs with outputs. When a relation is given as ordered pairs, the x-coordinates are inputs and the y-coordinates are outputs. A relation that pairs each input with exactly one output is a function.

Example 1 Determine whether each relation is a function. Explain.

$$\mathbf{a}$$
, $(-1, 3)$, $(0, 3)$, $(1, 3)$, $(2, 1)$, $(3, 1)$

Every input has exactly one output.

The input 5 has two outputs, 1 and 4.

So, the relation is a function.

So, the relation is not a function.

The domain of a function is the set of all possible input values. The range of a function is the set of all possible output values.

Example 2 Find the domain and range of the function represented by the graph.

а.

The domain is -1, 0, 1, and 2. The range is -4, -2, 0, and 2. Ь.

The domain is $-3 \le x \le 3$. The range is $-2 \le y \le 2$.

Practice

Check your answers at BigldeasMath.com.

Determine whether the relation is a function. Explain.

Find the domain and range of the function represented by the graph.

3.

4

5.

Date

Graphing Linear Functions

A linear function is a function whose graph is a nonvertical line. A linear function can be represented by a linear equation in two variables, y = mx + b, where m is the slope and b is the y-intercept. A solution of a linear equation in two variables is an ordered pair (x, y) that makes the equation true. The graph of a linear equation in two variables is the set of points (x, y) in a coordinate plane that represents all solutions of the equation. The points may be distinct or connected.

Discrete Domain	Continuous Domain		
A discrete domain is a set of input values that consists of only certain numbers in an interval.	A continuous domain is a set of input values that consists of all numbers in an interval.		
Example: Integers from 1 to 5	Example: All numbers from 1 to 5		
-2 -1 0 1 2 3 4 5 6	-2 -1 0 1 2 3 4 5 6		

Example 1 The linear function y = 29.8x represents the number y of kilometers Earth travels in orbit around the Sun in x seconds. (a) Find the domain of the function. Is the domain discrete or continuous? Explain. (b) Graph the function using its domain.

- a. Earth can travel in orbit for part of a second. The number x of seconds Earth travels in orbit can be any value greater than or equal to 0.
 - So, the domain is $x \ge 0$, and it is continuous.
- b. Make an input-output table to find ordered pairs.

×	0	1	2	3	4
y = 29.8x	0	29.8	59.6	89.4	119.2

Plot the ordered pairs. Draw a line through the points starting at (0, 0). Use an arrow to indicate that the line continues without end.

Practice

Check your answers at BigldeasMath.com.

Copy and complete the table.

- 1 2
- 3. BOATING A speed boat tour costs \$60 per ticket. There are 5 tickets left. The total cost y of the tickets is a function of the number t of tickets you buy.
 - a. Find the domain of the function. Is the domain discrete

b. Graph the function using its domain.

or continuous? Explain.

Function Notation

A linear function can be written in the form y = mx - b. By naming a linear function f, you can also write the function using function notation.

$$f(x) = mx + b$$

Function notation

The notation f(x) is another name for y. If f is a function, and x is in its domain, then f(x) represents the output of f corresponding to the input x. You can use letters other than f to name a function, such as g or h.

Example 1 Evaluate the function for the given value of x.

a.
$$f(x) = 2x + 5$$
; $x = 7$

$$f(7) = 2(7) + 5$$
 Substitute 7 for x.
= 14 + 5 Multiply.
= 19 Add.

When
$$x = 7$$
, $f(x) = 19$.

So, (-6, 2) is a solution.

b.
$$g(x) = 4x - x^2$$
; $x = -3$

$$g(-3) = 4(-3) - (-3)^2$$
 Substitute -3 for x.
= -12 - 9 Multiply.
= -21 Subtract.

When
$$x = -3$$
, $g(x) = -21$.

Example 2 Determine whether the ordered pair is a solution of the equation.

a.
$$h(x) = 8 + x$$
; $(-6, 2)$

$$2 \stackrel{?}{=} 8 + (-6)$$
 Substitute -6 for x and 2 for $h(x)$.

b.
$$p(x) = |3x - 1|; (-2, -7)$$

$$-7 \stackrel{?}{=} |3(-2) - 1|$$

Substitute
$$-2$$
 for x and -7 for $p(x)$.

$$-7 \stackrel{?}{=} |-7|$$

Evaluate.

Evaluate.

So,
$$(-2, -7)$$
 is *not* a solution.

Practice

Check your answers at BigIdeasMath.com.

Evaluate the function for the given value of x.

1.
$$f(x) = x + 9$$
; $x = 8$

2.
$$g(x) = 6 - 5x$$
; $x = -1$ **3.** $h(x) = 4x + 3$; $x = 10$

3.
$$h(x) = 4x + 3 \cdot x = 10$$

4.
$$n(x) = -x - 4$$
; $x = -2$ **5.** $p(x) = -\frac{3}{4}x^2$; $x = 6$ **6.** $q(x) = x^2 - 11x$; $x = 4$

5.
$$p(x) = -\frac{3}{4}x^2$$
; $x = 6$

6.
$$q(x) = x^2 - 11x$$
; $x = 4$

7.
$$k(x) = x^2 + 7x - 1$$
; $x = -3$ 8. $h(x) = |3x - 8|$; $x = 1$

8.
$$h(x) = |3x - 8|$$
; $x =$

9.
$$f(x) = |x| + 2$$
; $x = -15$

Determine whether the ordered pair is a solution of the equation.

10.
$$f(x) = 3x + 5$$
; $(-1, 2)$

11.
$$h(x) = 7x - 2$$
; $(-3, -19)$

12.
$$g(x) = -x^2 + x + 5$$
; $(-5, 25)$

13.
$$n(x) = x^2 - 6x - 1$$
; (4, -7)

14.
$$h(x) = |x| - 14$$
; (-4, 10)

15.
$$p(x) = [-9x - 2]; (0, 2)$$

16. TICKETS The function C(x) = 49.5x + 19.5 represents the cost (in dollars) of buying x concert tickets. How much does it cost to buy four tickets? How many tickets can you buy with \$465?

Name ______ Date _____

Zeros of Quadratic Functions

A zero of a function f is an x-value for which f(x) = 0. If a real number k is a zero of the function $f(x) = ax^2 + bx + c$, then k is an x-intercept of the graph of the function.

Example 1 Find the zeros of each function.

a.
$$f(x) = 9x^2 - 1$$

Set f(x) equal to 0. Then use square roots to solve for x.

$$9x^{2} - 36 = 0$$

$$9x^{2} = 36$$

$$x^{2} = 4$$

$$x = \pm \sqrt{4}$$

$$x = \pm 2$$

The zeros of the function are x = -2 and x = 2.

b.
$$f(x) = x^2 - 2x - 8$$

Set f(x) equal to 0. Then use factoring to solve for x.

$$x^{2} - 2x - 8 = 0$$

 $(x - 4)(x + 2) = 0$
 $x - 4 = 0$ or $x + 2 = 0$
 $x = 4$ or $x = -1$

The zeros of the function are x = -2 and x = 4.

Example 2 Find the zeros of $f(x) = x^2 - 5x + 7$.

Set f(x) equal to 0. Then use the Quadratic Formula to solve for x.

Notice that the graph of f does not intersect the x-axis.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(7)}}{2(1)}$$

$$= \frac{5 \pm \sqrt{-3}}{2}$$

$$= \frac{5 \pm i\sqrt{3}}{2}$$

Practice

Find the zero(s) of the function.

1.
$$f(x) = 8x^2 + 32$$

3.
$$f(x) = x^2 - 8x + 16$$

5.
$$f(x) = 4(x + 5)(x - 1)$$

7.
$$f(x) = 3x^2 + 12x + 15$$

9.
$$f(x) = -(x+1)^2 + 18$$

2.
$$f(x) = -5x^2 + 40$$

4.
$$f(x) = 4x^2 + 12x + 9$$

6.
$$f(x) = -\frac{1}{2}x(x+3)$$

8.
$$f(x) = 2x^2 - x - 15$$

10.
$$f(x) = (x-7)^2 + 9$$

Exponential Functions

Graphing Exponential Functions

An exponential function is a nonlinear function of the form $y = ab^x$, where $a \neq 0$, $b \neq 1$, and b > 0.

- When a > 0 and b > 1, the function is an exponential growth function.
- When a > 0 and 0 < b < 1, the function is an exponential decay function.

The graphs of the parent exponential functions $y = b^x$ are shown.

Example 1 Tell whether each function represents exponential growth or exponential decay. Then graph the function.

a.
$$f(x) = 2(\frac{1}{3})^x$$

Because a = 2 is positive and $b = \frac{1}{3}$ is greater than 0 and less than 1, the function is an exponential decay function. Use a table to graph the function.

b.
$$f(x) = 4(3)^x$$

Because a=4 is positive and b=3 is greater than 1, the function is an exponential growth function. Use a table to graph the function.

×	-2	– 1	0	1	:
y	<u>4</u> 9	: <u>4</u> 3	4	12	

Practice

Check your answers at BigldeasMath.com.

Tell whether the function represents exponential growth or exponential decay.

$$1. \ f(x) = \left(\frac{1}{4}\right)^x$$

2.
$$f(x) = \left(\frac{4}{3}\right)^x$$

3.
$$f(x) = 0.5(4)^x$$

4.
$$f(x) = 3(0.75)^x$$

5.
$$f(x) = 2(0.8)^x$$

6.
$$f(x) = 5(2)^x$$