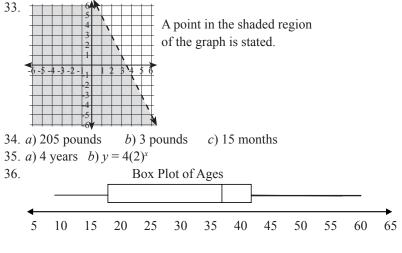


Algebra 1 Answer Keys

Topical Review Book Company

TEST 1 Part I

	1 41 (1									
1.	3	5.	2	9.	4	13. 1	17.	4	21.	4
2.	4	6.	2	10.	3	14. 2	18.	3	22.	1
3.	3	7.	1	11.	3	15. 1	19.	3	23.	2
4.	1	8.	2	12.	4	16. 4	20.	1	24.	1


For parts II, III, and IV, partial credit should be given for answers that include, but not limited to, the following;

- correct answer, but no work shown
- incorrect answer, but rest of work is appropriate
- appropriate work is shown, but one computational or rounding error is made

Part II

- 25. \$14
- 26. 2x(x+2)(x-3)
- 27. A point in the shaded region is stated along with justification.
- 28. x = -4, 2
- 29.17
- 30. Yes, x = -1 and y = -5 are the solutions to the equation 3x 2 = -x 6 and work is shown for the check.
- 31. f(-2) = 11
- $32. f(x) = (x-1)^2 + 7$ (1, 7)

Part III

Part IV

37. Solution (1, 1) and/or (1.5, 1.25)

TEST 2 Part I

	1 41 (1										
1.	2	5.	4	9.	3	13. 1	17.	2	21.	4	
2.	1	6.	2	10.	3	14. 1	18.	3	22.	2	
3.	2	7.	1	11.	4	15. 3	19.	1	23.	1	
4.	3	8.	2	12.	2	16. 3	20.	2	24.	3	

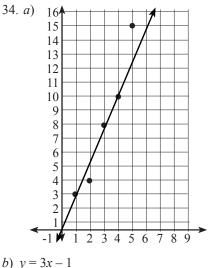
For parts II, III, and IV, partial credit should be given for answers that include, but not limited to, the following;

- correct answer, but no work shown
- incorrect answer, but rest of work is appropriate
- appropriate work is shown, but one computational or rounding error is made

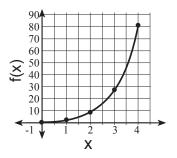
Part II

25.
$$y = \frac{1}{3}x + 5$$

- 26. $[0, \infty]$ or equivalent explanation
- 27. 2(x-1)(3x+1)
- 28. \$7,280
- 29. $\frac{3(b+4)}{1}$


$$b+2$$

$$30. \ 2x^4 - x^3 - 2x^2 + 2x - 4$$


- 31. h(-2) = -4
- 32. 210 chairs for guests

Part III

- 33. a) 25 + 8x < 11 + 10x or 11 + 10x > 25 + 8x where x is the month of the year
 - b) August December (x > 7)

35. An appropriate graph is drawn such as the one to the right: $-10 \le x \le 10, -100 \le x \le 100$ The graph is labeled appropriately. Function Rule: $y = 3^x$ or equivalent equation

- 36. *a*) y = 2.85x + 38.89
 - b) correlation coefficient r = 0.95
 - c) The correlation between the linear regression equation and the data is good as r = 0.95. If the correlation is good, the correlation coefficient is quite close to either 1 or -1. 0.95 is very close to 1.

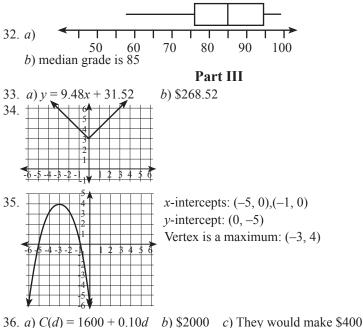
Part IV

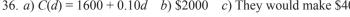
- 37. a) f(h) = 25 + 9.50h
 - *b*) $0 \le h \le 20$ is the domain
 - *c*) Appropriate graph and scale are drawn.

TEST 3 Part I

	1 41 (1										
1.	2	5.	4	9.	2	13.	3	17.	4	21.	4
2.	1	6.	3	10.	3	14.	4	18.	1	22.	2
3.	3	7.	3	11.	2	15.	3	19.	3	23.	3
4.	2	8.	4	12.	1	16.	1	20.	2	24.	2

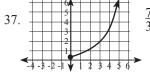
For parts II, III, and IV, partial credit should be given for answers that include, but not limited to, the following;


- correct answer, but no work shown
- incorrect answer, but rest of work is appropriate
- appropriate work is shown, but one computational or rounding error is made


Part II

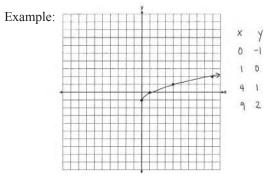
- 26. $\{-9\}$
- 27. $2x^4 + x^3 + 7x^2 + 4x 4$
- 28. $\{-16\}$ or (0, -16)

29. f(x) = 22x - 45 or equivalent function


- 30. $A(d) = d^2 \pi (\frac{1}{2} d)^2$ or equivalent function
- 31. x = -2, 10; a method is chosen with an appropriate justification.

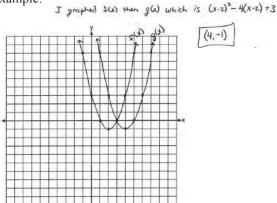
 $\frac{7}{3}$ is the average rate of change.

JUNE 2014

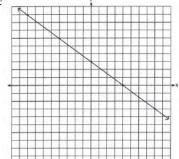

1.	1	5.	1	9.	3	13.	3	17.	4	21.	4
2.	4	6.	4	10.	2	14.	2	18.	1	22.	4
3.	2	7.	3	11.	3	15.	3				1
4.	2	8.	2	12.	3	16.	2	20.	1	24.	2

For parts II, III, and IV, partial credit should be given for answers that include, but not limited to, the following;

- correct answer, but no work shown
- incorrect answer, but rest of work is appropriate
- appropriate work is shown, but one computational or rounding error is made


Part II

25. A correct graph is drawn.

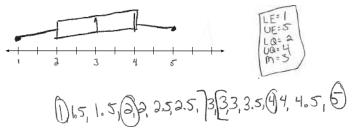


- 26. Correct explanations are made, such as 0.5 is the rate of decay and 300 is the initial amount.
- 27. 2, and correct work is shown.
- 28. (4, -1), and a correct explanation is given.

Example:

29. A correct graph is drawn, no, and a correct explanation that is based on the graph is given. Example

30. Yes, and a correct justification is given.


No, it doesn't full on the graph

Example: Yes it can because in a function all numbers in the Jonain must lead to a selfspecific number in the range, meaning one number in the domain cannot have two different numbers in the range,

31. $(x^2 + 7)(x + 1)(x - 1)$ and correct work is shown.

$$(x^{2}+7)$$
 $(x^{2}-1)$
 $(x^{2}+7)(x-1)(x+1)$

32. A correct box plot with $Min = 1, Q_1 = 2, Q_2 = 3, Q_3 = 4$, Max = 5 is drawn

Part III

33. $m(x) = x^2 + 10x + 16$ or an equivalent trinomial equation and -8 and -2, and correct work is shown.

$$(3x-1\sqrt{3}-x) + (4x^{2}+19) = m(x)$$

$$(3x-1\sqrt{3}-x) + (4x^{2}+19) = m(x)$$

$$m(x) = 10x + x^{2} + \frac{16}{22}$$

$$m(x) = 10x + x^{2} + \frac{16}{2}$$

34. (12 + 2x)(16 + 2x) = 396 or an equivalent equation, a correct description is given, and correct work is shown to find 3.

It is the length plus the walkway x width plus the walkway

(2x+16)(2x+12)=396	x+17=0	x-3=0	The width of	Y
4x ² +32x+24x+192=396 4x ² +56x-204=0 x ² +14x-51=0 (x+17)(x-3)=0	X=-1 Smet	-	the walkway 15 3 Meters	

35. A(n) = 175 - 2.75n, correct work is shown to find 63, and a correct explanation is given.

0 = 175-2.75m	She can watch for 63 weeks
	because at the 64th week she
2.75n = 175	won't have enough money to
$n = 63.63\overline{63}$	rent a movie.

36. 2.35c + 5.50d = 89.50 or an equivalent equation, no, and a correct justification is written, and correct work is shown to find 10.

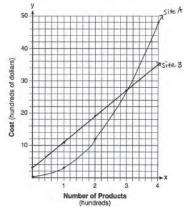
$$2.35 \cdot 8 = 18.8$$

$$5.50 \cdot 14 = 77$$

$$18.8 + 77 = 95.8 \quad so \quad it \quad isn'+ \quad true$$

$$2.35c + 5.50d = 89.50 \qquad c+d = 22$$

$$-2.35(\quad c+ \quad d = 22) \qquad c+12 = 22$$


$$-\frac{-2.35c}{3.15d} = -571.70 \qquad c = 10$$

$$3.15d = 37.8 \qquad 10 = cats$$

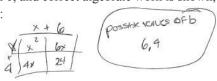
$$d = 12$$

Part IV

37. Both functions are graphed and labeled correctly, 3, and a correct explanation is given, and site *A* and a correct justification is given. Example:

AUGUST 2014 Part I

1.	1	5.	4	9. 3	13. 2	17. 1	21. 4
2.	2	6.	2	10. 3	14. 4	18. 4	22. 2
3.	3	7.	1	11. 1	15. 1	19. 4	23. 2
4.	3	8.	1	12. 3	16. 2	20. 1	24. 4

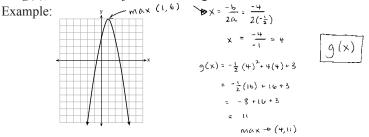

For parts II, III, and IV, partial credit should be given for answers that include, but not limited to, the following;

- correct answer, but no work shown
- incorrect answer, but rest of work is appropriate
- appropriate work is shown, but one computational or rounding error is made

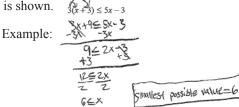
Part II

25. 4 and 6, and correct algebraic work is shown, such as factoring.

Example:


26. $B = 3000(1 + 0.042)^t$ or an equivalent equation in terms of B and *t* is written. 27. 18,000, and correct work is shown.

Example:
$$185 + 0.03 \times = 275 + 0.025 \times -0.025 \times$$

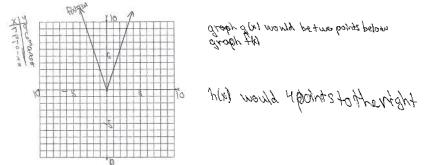

28. $2x^3 + 17x^2 + 25x - 50$ and correct work is shown.

Example:
$$(2x^{3}+7x^{-10})(x+5)$$

 $= 3x^{3}+7x^{2}-10x+10x^{2}+35x-50$
 $= 2x^{3}+17x^{2}+36x-50$

29. g(x), and a correct justification is given.

30. 6, and correct work is shown.


31. A correct plot is drawn, poor fit is stated, and a correct justification is written, such as stating that a pattern is formed.

> bad sit because there we pattern in there is duals

- Residual
- 32. 9, and a correct explanation is written.

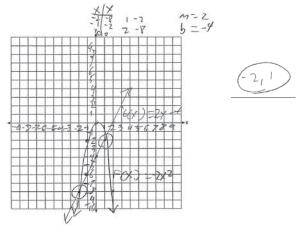
 $C = (\frac{1}{2})^2 (-(\frac{1}{2})^2)^2$ $C = (\frac{1}{2})^2 (-(\frac{1}{2})^$ Part III

33. A correct graph of f(x) is drawn. A correct relationship for g(x) is described, such as g(x) is two units below f(x). A correct relationship for h(x) is described, such as h(x) is shifted 4 units to the right of f(x).

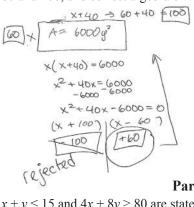
 $34. \frac{2A-hb_2}{h}$ or an equivalent expression and 8, and correct work is shown. 20

Example:
$$\frac{A}{2h} = \frac{\frac{1}{2}M(b_{1}+b_{2})}{\frac{1}{2}M} \qquad b_{1} = \frac{2m}{h} - b_{2}$$

$$\frac{A}{2h} = \frac{1}{2}M + b_{2} \qquad A = \frac{1}{2} + b_{2} = b_{1} \qquad C(60) = 12$$

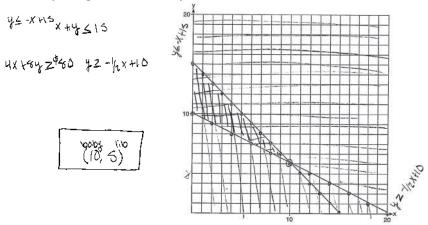

$$\frac{A}{2h} = b_{1} + b_{2} \qquad A = \frac{1}{2} + b_{2} = b_{1} = \frac{120}{b_{1}} = 12$$

$$\frac{120}{b_{1}} = 12$$


$$20 - 12$$

$$b_{1} = 8$$

35. Both functions are graphed correctly, and -2 and 1 are stated.



36. 60 and 100, and correct algebraic work is shown.

Part IV

37. $x + y \le 15$ and $4x + 8y \ge 80$ are stated. Both inequalities are graphed and shaded correctly with at least one labeled correctly. A correct combination of babysitting hours and library hours is stated.

JANUARY 2015 Part I

1.	2	5.	3	9. 4	13. 3	17. 4	21. 1
2.	2	6.	2	10. 2	14. 4	18. 3	22. 3
3.	4	7.	1	11. 4	15. 3	19. 4	23. 4
4.	1	8.	1	12. 2	16. 1	20. 3	24. 1

For parts II, III, and IV, partial credit should be given for answers that include, but not limited to, the following;

- correct answer, but no work shown
- incorrect answer, but rest of work is appropriate
- appropriate work is shown, but one computational or rounding error is made

Part II

25. Correct, and a correct justification is given.

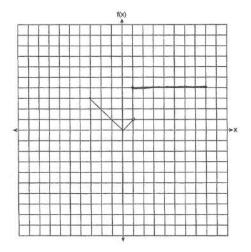
26. 25%, and correct work is shown. Example: 33+12=45

45 = 25 => 25%

27. (-4, 1), and a correct explanation is given.

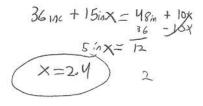
Example: IF (-4,1) is odded to the table, then the relation would no longer

be a function, because you can't have one input, with 2. different cutputs.


28. $-2x^2 + 6x + 4$ or equivalent trinomial, and correct work is shown. Example: 3x²+8x-7

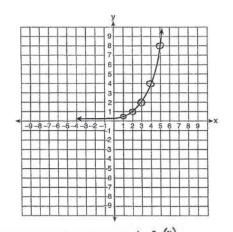
$$\frac{-5x^2-2x+11}{-2x^2+6x+4}$$

29. $3\frac{1}{2}$ and $-\frac{1}{2}$, and correct Example: $4x^{n} \cdot N_{m^{n}}$ $4x^{n} \cdot N_{m^{n}}$


$$(2x+1)(2x-7)=0$$

 $x+1=0$
 $x+1=0$
 $4x=-1$
 $x=-1$
 $x=-1$
 $x=-1$
 $x=-1$
 $x=-1$
 $x=-1$
 $x=-1$
 $x=-1$
 $x=-1$

30. A correct graph is drawn.

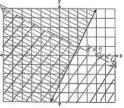

31. $\frac{12}{5}$ or 2.4, and correct algebraic work is shown.

Example: let x = number of years The exch) How he for each Tree to be the some helion

32. $y = 0.25(2)^x$ or an equivalent equation is written, and a correct explanation is given.

Example: $y = 25 \times 2^{\times}$

I did this by taking the y-values of the domains 1-5 (x) and putting them into my calculator. Then I used ExpReg under STATISTICS and used that equation


Part III

33. A correct system of equations is written, popcorn = \$5.75, drink = \$2.25 and correct work is shown.

Example:

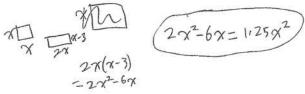
34. $y \ge 2x - 3$, a correct graph, and disagree, and a correct explanation is written. Example:

a) $y \ge 2x - 3$ b) x + 2y < 4 $2y \le 4 - x$ $y \le 2 - \frac{1}{2}x$

c) I disagree with Oscar. While it would make $y \ge 2 \times -3$ true (1≥2(2)-3) the other can't be on the line of $y \le 2 - \frac{1}{2} \times -3$ (1 ≤ 2 - $\frac{1}{2} \times -3$).

35. 0.94 and a correct explanation is written.

36. Maximum is stated, a correct explanation is written, and $f(x) = -(x - 4)^2 + 25$, and correct work is shown using completing the square.


a) yz-x2+8x+9

The versex represents a maximum point-for the function because the function is negative as stated by the -x². Therefore, we know that the parabolia opens downwald maleing the vertex a modimum and not-a monimum.

b) $y_{2} = -x^{2} + 8 \times tq$ $y_{2} = -(x^{2} - 8x) tq$ $y_{2} = -(x^{2} - 8x + 16) - (-16) tq$ $y_{2} = -(x^{2} - 8x + 16) - (-16) tq$ $y_{2} = -(x^{2} - 1)^{2} + 16 tq$ $y_{2} = -(x^{2} - 1)^{2} + 25$ (h, k)

Part IV

37. $(x - 3)(2x) = 1.25x^2$ or an equivalent quadratic in one variable is written, a correct explanation is written, 80, and correct work is shown. Example:

My equation models the struction because

It shows 2x2-6x, the area of the new garden, is 1.25 times larger than the area of the original garden, x2 with x being the length of a side of the original square garden.

$$2 x^{2} - 6x = 1.25 x^{2} 2(8)^{2} - 6(8) = 2.64 - 48$$

$$0.75 x^{2} - 6x = 0$$

$$x(0.75 x - 6) = 0$$

$$x = 0$$

$$x = 0$$

$$x = 0$$

$$x = 0$$

$$80 \text{ square units}$$

$$6 = 0.75 = 8$$