;th

Formulas for Statistical Variation

An element of a data set will be represented as x_i , where *i* represents the *i*th term of the data set.

The arithmetic mean of a data set will be represented by μ .

Examples of summation notation

$$\sum_{i=1}^{5} i = 1 + 2 + 3 + 4 + 5 \qquad \sum_{i=1}^{4} x_i = x_1 + x_2 + x_3 + x_4$$

Mean absolute deviation $=\frac{\sum_{i=1}^{n} |x_i - \mu|}{n}$, where μ represents the mean of the data set, *n* represents the number of elements in the data set, and x_i represents the *i*th element of the data set.

Variance $(\sigma^2) = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$, where μ represents the mean of the data set, *n* represents the number of elements in the data set, and x_i represents the *i*th element of the data set.

Standard deviation
$$(\sigma) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$
, where μ represents the mean of the data set, *n* represents the number of elements in the data set, and x_i represents the element of the data set.

z-score $(z) = \frac{x - \mu}{\sigma}$, where x represents an element of the data set, μ represents the mean of the data set, and σ represents the standard deviation of the data set.

٦

Finding Mean Absolute Deviation (MAD)		
1) Enter data in a list such as L1 using [STAT][EDIT].		
2) Press [STAT][CALC][1 -VAR Stats] for the list to calculate stats.		
WAY 1	WAY 2	
3) Enter the formula SUM(ABS(L ₁ - \overline{x}))/n	3) Press \blacktriangleright to move to L ₂ .	
(Use [VARS][5: Statistics] to find x and n; use [2 nd][LIST][5:sum] to find sum; use [MATH][NUM][1:abs] to find abs) (Or use the CATALOG button!)	 Press to highlight L₂. Press [ENTER] to get L₂= at the bottom of the screen. 	
	5) Press MATH > to get to NUM, then press [1: abs(].	
	 6) Press [2nd][1] to get L₁, then - (minus sign) [VARS][5:Statistics][2: x] 	
	7) Press [)][ENTER]. L ₂ will fill with data that is equivalent to $abs(L_1 - \overline{x})$	
	8) Press [STAT][CALC][1 - Var Stats][2 nd][L ₂] [ENTER] (run stats for L ₂)	
	9) \overline{x} represents the MAD	

Calcu	lator	Steps
-------	-------	-------

Finding Standard Deviation (σ)	Finding Variance	
 Enter data in a list such as L1 using [STAT][EDIT]. 	 Find the standard deviation as described at left (σx). 	
 Press [STAT][CALC][1 -VAR Stats] The default list is L1; if you want to find the stats for other lists you must enter its name. Statistics will scroll. The standard deviation is listed next to ox (Note: do not use Sx, as this is standard devation for a sample, which is beyond the scope of this course). 	 2) Square the standard deviation and you have the variance (σ²). One way to do this is to press [VARS][5:Statistics][4:σx]. Then press the x² button and ENTER to square it. 	
NOTE: Interpretation of scrolled statistics		
\overline{x} = mean	Sx =sample standard deviation (don't use)	
$\sum x = sum of all the x values$	σx = population standard deviation (use this!)	
Σx^2 = sum of all the x^2 values	n = number of data points	

Т