

SEAKING MASTERY OF MATTER

UNIT 3 MODULE 1 SI UNITS & DENSITY

Qualitative vs. Quantitative

- Unit 2 covered **qualitative descriptions** of matter. Qualitative descriptions of matter include:
 - Words to communicate the nature of matter, but they do not include numbers.
- This unit focuses on **quantitative descriptions** of matter. Quantitative descriptions of matter include:
 - Numbers to communicate measured quantities.

A example of a qualitative description is "Eevee is soft and fluffy." An example of a quantitative description is "Eevee has a mass of 4 kilograms."

English System of Measurement

- Quantitative data can be reported using various units of measurement.
- English system of measurement:
 - Weight = pounds (lb), ounces (oz)
 - Volume = quarts (qt), pints (pt), cups (c), etc.
 - Temperature = degrees Fahrenheit (F)
 - Length = inches (in), feet (ft), yards (yd), miles (mi)

Measurements in the Pokémon Go Universe

- However, scientists and Pokémon masters do NOT use the English system of measurement.
- Scientists and Pokémon masters use SI (International System) units of measurement, which are based on the metric system.
- SI base units of measurement used in Chemistry:
 - Time = seconds (s)
 - Amount of substance = moles (mol)
 - Length = meters (m)
 - Mass = kilogram (kg)
 - Temperature = Kelvin (K)

Visualizing SI Units Using Common Household Goods

Length	Volume	Mass
mm = about width of piece of yarn	mL = about $\frac{1}{4}$ teaspoon	g = 1 medium paper clip; 1 dollar bill
cm = about radius of nickel	L = about 1 quart; $\frac{1}{2}$ of 2 L bottle of	kg = almost 2 pounds; bag of brown
m = little longer than yard stick	soda	sugar
km = just over $\frac{1}{2}$ mile	$*1 \text{ mL} = 1 \text{ cm}^3 = 1 \text{ cc}$	

Measuring a Pokémon with Base SI Units

	TABLE 1.4	Some Prefixes for Multiples of SI Units				
	Factor		Prefix	Symbol	Example	
	1 000	000 - 106		М	$1 \dots \dots$	
	1,000,1	$000 = 10^{3}$ $000 = 10^{3}$	mega kilo	M k	1 megameter (Mm) = 10^{5} m 1 kilogram (kg) = 10^{3} g	
5		$100 = 10^2$	hecto	h	1 hectogram (hg) = 100 g	
		$10 = 10^1$	deca	da	1 decagram dag) = 10 g	
		$0.1 = 10^{-1}$	deci	d	$1 \operatorname{decimeter} (\operatorname{dm}) = 0.1 \operatorname{m}$	
	С	$0.01 = 10^{-2}$	centi	С	1 centimeter (cm) = 0.01 m	
	0.0	$001 = 10^{-3}$	milli	m	1 milligram (mg) = 0.001 g	
	*0.000	$001 = 10^{-6}$	micro	μ	1 micrometer (μ m) = 10 ⁻⁶ m	
: 2						

WOW! That Onix has a mass of 1 Megagram (Mg)!

Note:

 $1 \text{ Mg} = 10^6 \text{ g}$

= 1,000,000 g

SI Conversions

Metric prefixes are used with base units to indicate the scale of the number. Imagine a staircase where each step represents a unit prefix.

Derived Units

- Derived units are defined by a combination of units.
 - Volume
 - Equation = (I) x (w) x (h)
 - Units = $cm^3 (cc, mL) or dm^3 (L)$
 - In another words, 1 cm³ = 1 cubic centimeter (cc) = 1 milliliters (mL) or 1 dm³ = 1 liter (L)
 - Density
 - Density = mass/volume or D = m/V
 - Units = kg/m³, g/mL, or g/cm³

