Table 2:	Addition and	subtraction	situations	by grade level.
----------	--------------	-------------	------------	-----------------

	,,,			
	Result Unknown	Change Unknown	Start Unknown	
Add To	A bunnies sat on the grass. B more bunnies hopped there. How many bunnies are on the grass now? $A + B = \Box$	A bunnies were sitting on the grass. Some more bunnies hopped there. Then there were C bunnies. How many bunnies hopped over to the first A bunnies? $A + \Box = C$	Some bunnies were sitting on the grass. <i>B</i> more bunnies hopped there. Then there were <i>C</i> bunnies. How many bunnies were on the grass before? $\Box + B = C$	
Take From	<i>C</i> apples were on the table. I ate <i>B</i> apples. How many apples are on the table now? $C - B = \Box$	<i>C</i> apples were on the table. I ate some apples. Then there were <i>A</i> ap- ples. How many apples did I eat? $C - \Box = A$	Some apples were on the table. I ate <i>B</i> apples. Then there were <i>A</i> apples. How many apples were on the table before? $\Box - B = A$	
	Total Unknown	Both Addends Unknown ¹	Addend Unknown ²	
Put Together /Take Apart	A red apples and B green apples are on the table. How many apples are on the table? $A + B = \square$	Grandma has <i>C</i> flowers. How many can she put in her red vase and how many in her blue vase? $C = \Box + \Box$	<i>C</i> apples are on the table. <i>A</i> are red and the rest are green. How many apples are green? $A + \Box = C$ $C - A = \Box$	
	Difference Unknown	Bigger Unknown	Smaller Unknown	
Compare	"How many more?" version. Lucy has A apples. Julie has C apples. How many more apples does Julie have than Lucy?	<i>"More" version suggests operation.</i> Julie has <i>B</i> more apples than Lucy. Lucy has <i>A</i> apples. How many apples does Julie have?	"Fewer" version suggests operation. Lucy has B fewer apples than Julie. Julie has C apples. How many apples does Lucy have?	
	"How many fewer?" version. Lucy has A apples. Julie has C apples. How many fewer apples does Lucy have than Julie? $A + \Box = C$	"Fewer" version suggests wrong operation. Lucy has <i>B</i> fewer ap- ples than Julie. Lucy has <i>A</i> ap- ples. How many apples does Julie have? $A + B = \Box$	"More" version suggests wrong op- eration. Julie has <i>B</i> more ap- ples than Lucy. Julie has <i>C</i> ap- ples. How many apples does Lucy have? $C - B = \Box$	
	$C - A = \Box$		$\Box + B = C$	

Darker shading indicates the four Kindergarten problem subtypes. Grade 1 and 2 students work with all subtypes and variants. Unshaded (white) problems are the four difficult subtypes or variants that students should work with in Grade 1 but need not master until Grade 2. Adapted from CCSS, p. 88, which is based on *Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity*, National Research Council, 2009, pp. 32–33.

- ¹ This can be used to show all decompositions of a given number, especially important for numbers within 10. Equations with totals on the left help children understand that = does not always mean "makes" or "results in" but always means "is the same number as." Such problems are not a problem subtype with one unknown, as is the Addend Unknown subtype to the right. These problems are a productive variation with two unknowns that give experience with finding all of the decompositions of a number and reflecting on the patterns involved.
- ² Either addend can be unknown; both variations should be included.