

Adalae: The Cell Cycle & Cancer Notes - KEY SEMESTER 2023

INSTRUCTOR:

instructor@email.com

Vocabulary / Key Terms/ Concepts	The Cell Cycle and Cancer		
Anaphase	Student Expectations:		
Canaar	 Know that the cell cycle is a repeating sequence of cellular growth and division during the life of an organism. 		
Cuncer	 Understand that cells divide to reproduce (in the case of a unicellular organism), to grow, and to replace worn-out or damaged cells. 		
Cell Cycle	 Describe the stages of the cell cycle Interphase – cells spend most of their lifetime in interphase. It has three stages: 		
	 G1- First growth phase: cell grows rapidly and carries out routine functions S-Synthesis phase: cell's DNA is copied. At the end of phase, each chromosome consists of two chromatids attached at the centromere. 		
Cell Cycle Checkpoints	 G2- Second growth phase: microtubules are assembled Mitosis: cell division of nucleus 		
	Prophase: chromosomes coil up and become visible. The nuclear envelope dissolves and a spindle forms		

Cell Division	Metaphase: chromosomes move to the middle of the cell and line up along the equator.		
	Spindle fibers link the chromatids of each chromosome to opposite poles		
	Anaphase: Centromeres divide and pull apart. The chromosomes move toward opposite poles		
contriolos	as the spindle fibers attached to them shorten		
	Telophase: Two genetically identical cells are formed when a nuclear envelope forms around		
	the chromosomes at each pole. The chromosomes uncoil and the spindle dissolves.		
	Cytokinesis: division of cytoplasm		
centromere	Know that the cell cycle in eukaryotes is controlled by proteins at three main checkpoints		
	Cell growth (G1) checkpoint: makes the decision whether the cell will divide or not. Stimulates		
	the S phase where the cell will copy its DNA. Some cells like nerve and muscle cells remain in		
chromatid	this resting period and will never divide		
	DNA Synthesis (G2) checkpoint: DNA replication is checked and if it is passed, proteins help		
	trigger mitosis		
abromonoma	Mitosis checkpoint: triggers the exit from mitosis. Signals the G1 phase		
chromosome	Recognize that if any of the genes necessary to make the proteins that regulate cell growth		
	and division are mutated, the protein may not function, and the regulation of cell growth and		
	division may be disrupted.		
cyclin	Cancer is a disorder of cell division; mitosis out of control		
	G0 Checkpoint - Apoptosis - programmed cell Death		
cvtokinesis	Introduction:		
-	All cells are derived from pre-existing cells		
	New cells are produced for repair and to replace damaged or old cells		
	• Differs in Prokaryotes (bacteria - binary fission) and Eukaryotes (protists, fungi, plants, & animals)		

DNA Synthesis (G2)	Reasons for Cell Division:		
	Cell Growth		
	Repair & replacement of damaged cell parts		
Chaelthaint	Reproduction of some species		
	Why do cells need to replicate their genetic material		
	(chromosomes) before they go through mitosis?		
	- The instructions for making cell parts are encoded in the		
G1 Checkpoint	DNA, so each new cell must get a complete set of the DNA		
	molecules		
	- DNA Replication:		
G1 Phase	DNA must be copied or replicated <u>before</u> cell division		
	Each new cell will then have an identical copy		
	of the DNA		
G2 Phase	Chromosomes		
	Structure: Centromere		
	– DNA is tightly coiled around proteins called		
Gene Mutations	histones. Further condensing forms a		
	chromosome 💈 🧸 🛔		
	• Replication:		
	- When chromosomes replicate they go from one		
Interphase	chromatid to two identical chromatids (called One chromosome (dualisated)		
	"sisters") attached by the centromere.		
	- When the chromatids are drawn apart toward opposite poles during Anaphase, the separated		
	chromatids are now each called a chromosome.		

Metaphase	Karyotype			
	- A picture of the chromosomes from a human cell			
	arranged in pairs by size			
	- First 22 pairs are called Autosomes			
Mitosis	- Last pair are the Sex Chromosomes			
	- XX female or XY male			
	- Boy or Girl? The male parent & the Y chromosome			
mitosis	decides			
	The Cell Cycle			
	Five Phases of the Cell Cycle:			
Mitonia Chaelthoint	1. G1/ Gap 1 – Primary Growth Phase			
	- 1 st growth stage after cell division			
N	– Cells mature by making more cytoplasm & organelles			
E	Cell carries on its normal metabolic activities			
Prophase R	2. S – Synthesis Phase			
P	- DNA is copied or replicated			
A	3. G2 / Gap 2 – Secondary Growth Phase			
S Dhann	– 2 nd Growth Stage			
s Phase E	 Occurs after DNA has been copied 			
	All cell structures needed for division are made (e.g. centrioles)			
	 Both organelles & proteins are synthesized 			
spindle	4. Mitosis			
	 Division of the nucleus 			
	– Also called Karyokinesis			
	– Only occurs in Eukaryotes			

5. Cytokinesis

- Means division of the cytoplasm
- Division of cell into two, identical halves called daughter cells
- In **plant** cells, **cell plate** forms at the equator to divide cell
- In **animal** cells, a **cleavage furrow** forms to split cell

Daughter Cells

- Have the same number of chromosomes as each other and as the parent cell from which they were formed
 - Identical to each other, but smaller than parent cell
 - Must grow in size to become mature cells (G₁ of Interphase)

1

Control of the Cell Cycle

- Introduction
 - 1. Importance of cell cycle regulation
 - Proper control of the cell cycle is very important to maintain a balanced and healthy growth of cells.
 - When the cell cycle goes awry, it can lead to diseases like cancer and developmental disorders.
 - 2. Key players in cell cycle control
 - Cyclins, CDKs, and cell cycle checkpoints are the main components that regulate the cell cycle.
- Cyclins
 - **1. Definition** and characteristics
 - Cyclin-dependent proteins
 - a. Cyclins are special proteins that regulate the activity of other proteins called CDKs.
 - **b.** They are **named cyclins** because their levels in the cell **go up** and **down** in a repeating **pattern** during the cell cycle.
 - Regulatory proteins
 - a. Cyclins control the progress of the cell cycle by binding to and activating specific CDKs.
 - b. They work like helpers for CDKs, enabling them to do their job of adding phosphate molecules to specific proteins involved in the cell cycle.
 - 2. Function and role in cell cycle progression
 - Activation of cyclin-dependent kinases (CDKs)
 - Cyclins attach themselves to CDKs, making them active and ready to work.
 - 3. Formation of cyclin-CDK complexes
 - **Cyclin-CDK combinations** add **phosphate** molecules to specific **proteins**, which helps move the cell through different phases of the cell cycle.

4.	Regulation of cell cycle transitions
	- Cyclins make sure that each phase of the cell cycle is completed before the cell moves on
	to the next phase.
5.	Specificity for different cell cycle phases
	- Different cyclins are active at different times during the cell cycle, which ensures that each
	phase happens at the right time.
6.	Examples of cyclins and their roles
	 G1 cyclins (e.g., cyclin D)
	G1 cyclins help cells move from the first growth phase (G1) to the DNA synthesis phase
	(S phase) by activating certain CDKs.
	 S-phase cyclins (e.g., cyclin E)
	S-phase cyclins help start the process of copying the DNA by activating specific CDKs.
	 Mitotic cyclins (e.g., cyclin B)
	Mitotic cyclins help cells transition from the growth phase (G2) to the division phase
	(mitosis) by activating particular CDKs.
Сус	clin-Dependent Kinases (CDKs)
1.	Definition and characteristics
	- Special enzymes - CDKs are enzymes that add phosphate molecules to other proteins,
	specifically on serine and threonine amino acids.
	- This process of adding phosphates is called phosphorylation and is important for controlling
	the cell cycle.
2	Association with cyclins

- CDKs work together with
cyclins, and they need cyclins to Start of M phase
become active.
3. Regulation by phosphorylation G2/M-phase cyclin G2/M-phase CDK
- The activity of CDKs is
controlled by adding or
removing phosphate
molecules on them.
4. Activation and function of CDKs Degradation of
- Binding to cyclins
CDKs attach themselves to
cyclins to form active pairs.
- Phosphorylation and Suppose curlin CDK Suppose curlin Suppose cu
activation by CAK Degradation of
(CDK-activating kinase)
CDKs need to be phosphorylated by another protein called CAK to become fully active.
 Substrate specificity and phosphorylation targets
CDKs add phosphate molecules to specific proteins that are involved in controlling the
cell cycle.
 Role in cell cycle progression
\square CDKs being the cell move through different phases of the cell cycle by phosphorylating key
proteins
- Exemples of CDKs and their roles
CDK4 and CDK6 in G1 phase

CDK4 and CDK6 , when joined with cyclin D , help cells move from the first growth phase
(GI) to the next phase.
CDK2 in S phase
CDK2 , along with cyclin E , starts the DNA replication process during the DNA synthesis
phase (S phase).
CDK1 in G2 phase and mitosis
CDK1 , when combined with cyclin B , helps cells transition from the growth phase (G2) to
the division phase (mitosis).
Cell Cycle Checkpoints
1. Definition and importance
 Special control points
Cell cycle checkpoints are like checkpoints along the cell cycle, where the cell stops and
checks if everything is going well before moving forward.
These checkpoints are crucial to ensure that the cell divides correctly and doesn't make
mistakes.
2. Preventing cell cycle progression under unfavorable conditions
- Checkpoints stop the cell cycle if there are problems like damaged DNA or unfavorable
conditions for growth.
This pause gives the cell time to fix the problems or make sure everything is ready before
moving on.
3. Checkpoints
 G1/S checkpoint
Role in assessing DNA integrity and growth conditions

\star The G1/S checkpoint checks if the DNA is intact and if the cell has the necessary		
conditions for growth before entering the DNA synthesis phase (S phase).		
 Activation and inhibition of cyclin-CDK complexes ★ Certain proteins can either activate or stop the activity of cyclin-CDK pairs to pause 		
the cell cycle G ₁ checkpoint (restriction) • Is the cell big enough? • Are there enough energy and other reserves? Is the DNA damaged?		
at this		
checkpoint.		
 G2/M checkpoint 		
Role in DNA replication completion and DNA damage detection		
\star The G2/M checkpoint makes sure that DNA replication is finished and detects any		
DNA damage before the cell enters the division phase (mitosis).		
Activation and inhibition of cyclin-CDK complexes		
★ Special proteins can stop the activity of cyclin-CDK pairs to halt the cell cycle at this checkpoint.		
 Metaphase / Spindle assembly checkpoint 		
Role in monitoring chromosome attachment to the spindle apparatus		

- Cancer is essentially a disease of mitosis - the normal 'checkpoints' regulating mitosis are
ignored or overridden by the cancer cell. Cancer begins when a single cell is transformed , or
converted from a normal cell to a cancer cell.
- Often this is because of a change in function or a mutation that occurs in one of several genes
that normally function to control growth.
– Examples:
1) The p53 gene , the "guardian of the genome", usually functions to properly control the cell
cycle. However, p53 is mutated in over 50% of all human cancers.
2) The BRCA-1 <i>gene</i> , the "Breast Cancer Gene" normally functions to suppress tumor formation;
but if a gene contains mutations such that BRCAI does not work properly, tumor formation
can begin (Note : mutations in this gene do not mean that a person <u>will</u> develop breast
cancer, just that they have an increased risk for breast cancer).
- Once these crucial Cell Cycle genes start behaving abnormally, cancer cells proliferate wildly by
repeated, uncontrolled mitosis.
- Tumors - Good Cells gone Bad? The cancer cells proliferate to form a mass of cancer cells
called a tumor. As the tumor grows larger, it begins to release proteins from the cell to attract
new blood vessel growth (this is called <i>angiogenesis</i>). At this point, the tumor contains ~ 1 million
cells and is about the size of a ' <i>bb</i> '.
1) Benign: tumor cells remain at the original site. It can be removed surgically or killed by
radiation, usually eliminating any further cancer development at that site.
2) Malignant: some tumor cells send out signals that tell the body to produce a new blood
vessel at the tumor site. These cells not only have their own food and oxygen supply but also
an avenue for escape to a new part of the body - through the new blood vessel and into the
bloodstream. Cells that break away from the tumor begin to spread to surrounding tissues

	(via the bloodstream or lymph) and start new tumors = <i>metastasis</i> . Usually, surgery is
	performed to remove the tumor, followed by radiation and chemotherapy.
- Un	usual features of Cancer Cells.
	Cancer cells are frequently " immortal ": whereas normal cells divide about 50 times and they
	die, cancer cells can go on dividing indefinitely if supplied with nutrients
	Cancer cells often have unusual numbers of chromosomes or mutations in chromosomes.
	Aging (production of toxic oxygen "free radicals"), exposure to toxins (like components of
	tobacco tar), and mutagens (like ultraviolet light) all cause mutations in genes and cancer;
	but normal errors in DNA replication can lead to the transformation of the cell if they occur
	in a crucial gene.
	Cancer cells may also have an abnormal cell surface; instead of " sticky " to their neighboring
	cells, cancer cells tend to "round up" and break attachments to their neighbors' cells,
	allowing for metastasis.
	Cancer cells ignore the usual density-dependent inhibition of growth in cell culture (or in
	body tissues), multiplying after contact with other cells are made, piling up until all nutrients
	are exhausted.
- Sto	opping cancer cell growth:
	Chemotherapy Drugs stop DNA synthesis/ replication:
	* Adriamycin and Cytoxan prevent DNA from unwinding properly,
	* SFU inhibits incorporation of T nucleotides
	* Methotrexate and 5-MP prevents cells from making nucleotides
	* ARA-C is a C nucleotide "mimic" that gets incorporated and stops further DNA synthesis -
	No DNA replication no new cancer cells

	Mitosis - A Summary		
	Why	Growth & Repair	
	When	From fertilization until death	
	Where	Somatic/Body cells - skin, muscle, bone, tissues, etc	
	Outcomes	2- Genetically Identical Daughter cells	
Notes Summary			