Name		
Date	Per	

WEBQUEST ACTIVITY: Computer Simulation of Chemical Bonding

<u>Directions</u>: Use the links as instructed. Answer the questions and/or draw the diagrams requested on this sheet of paper.

**NOTE: this activity is posted as a pdf on my webpage, so you can access it there and click directly on the links to the webpages!

1st WEBPAGE: Go to http://www.ausetute.com.au/ionicbond.html

Read through the information and answer the following questions.

- 1) Diagram the ionic lattice (array of cations and anions) shown at the right side of the page.
- 2) What is an ionic bond?

- 3) List some physical properties of ionic compounds.
- 4) Provide an explanation as to WHY ionic compounds have high melting points.
- 5) What are the two major factors that lead to higher melting points in some ionic compounds (such as MgO) with a higher melting point than other ionic compounds (such as NaCl)? **Describe / explain each one.**
- 6) In what state(s) do ionic compounds conduct electricity? Why don't ionic compounds conduct electricity in the solid state?
- 7) Explain how the structure of ionic compounds makes them brittle.

1) Which elements tend to GAIN electrons and which elements tend to LOSE electrons in an ionic bond?				
2) Draw a before and after picture for the formation of Sodium Chloride (NaCl) and Calcium Fluoride (CaF₂) . Include explanations in each picture.				
Na and CI before bonding	NaCl after bonding			
Mg and F before bonding	MgF ₂ after bonding			

 ${\bf 2}^{nd} \ \textbf{WEBPAGE} : \ \ \textbf{Go to} \quad \underline{\textbf{http://chemistry.tutorvista.com/physical-chemistry/ionic-bonding.html}}$

Click through the compounds in the ionic compound box and watch the animations.

latch (& listen to) the video animation and answer the following questions.
How does forming an ionic bond satisfy the valence electrons (i.e. the octet rule) of sodium and allorine in the formation of sodium chloride? Defend your answer with pictures.
How does forming a covalent bond satisfy the valence electrons (i.e. the octet rule or full outer nell) of hydrogen and oxygen in the formation of water? Defend your answer with pictures.
h WEBPAGE: Go to https://www.youtube.com/watch?v=LkAykOv1foc
atch the animation on Covalent Bonding. Either turn on the sound or turn on the caption (CC") and read along. Answer the following questions.
Which elements are stable on their own? WHY are they stable?

2) How do other elements (i.e. NOT the noble gases) achieve this kind of stability?

3) How does a COVALENT BOND form?

4) Diagram the following covalently bonded molecules. configuration works.	. Below each molecule, explain why that bonding
T	

Diagram	Why it works / type of bond formed (i.e. single, double, triple, etc.)
Cl ₂	
O_2	
N ₂	