Name					
Period	Date	/	/		

17 • Acids & Bases

Self-Ionization of Water

This tutorial illustrates the process by which water molecules act as both a proton acceptor (base) and a proton donor (acid), and explores the equilibrium constant (K_w) for the self-ionization of water.

Section 1 of 7 – Introduction

The initial animation is the key idea in the tutorial.

Press Replay if you need to see it again.

Another name for self-ionization of water is _____-ionization of water.

Draw the Lewis electron-dot structure for H_2O .

What do the pink clouds represent? _____

An H^+ (a proton) moves from one H_2O to the other. When H_2O *gains* an H^+ , it becomes _____. When H_2O *loses* an H^+ , is becomes _____.

Section 2 of 7 – Molecular View

According to the Brønsted-Lowry definition, an acid is a proton _____ and a base is a proton _____.

A substance that can accept OR donate protons is said to be _____.

After a water donates an H^+ , its formula is _____. After a water accepts an H^+ , its formula is _____. The equation for this process would be: $H_2O(l) + H_2O(l) \leftrightarrows (aq) + (aq)$

Section 3 of 7 – Molecular View

Watch the animation. Is this equilibrium *reactant-favored* or *product-favored*?

_____ \ 1/ _____ \ 1/

ACID-BASE TUTORIALS-1

Section 4 of 7 – The Water Ionization Constant Box the equation below that better illustrates the equilibrium between H_2O and its ions.

$$2 H_2O(l) = H_3O^+(aq) + OH^-(aq)$$
$$2 H_2O(l) = H_3O^+(aq) + OH^-(aq)$$

Copy the equilibrium constant expression, K_w.

The value of K_w at 25°C is _____.

At a higher temperature, do you think you will get more ions or fewer ions? _____

To calculate one ion's concentration from the other you could rewrite the $K_{\rm w}$ equation as:

Q2)
$$[H_3O^+] = ----=$$

Section 7 of 7 – Conclusion

The Concept Question misuses a word. What is it?

Can you answer the question? (It's important.)

Acid-Base Ionization

This tutorial explores the differences among Brønsted-Lowry acids, Brønsted-Lowry bases, Lewis acids and Lewis Bases.

Section 1 of 12 – Introduction

What acid is shown?		
This substance is	(ionic /	molecular).

After the H_2O enters and becomes H_3O^+ , the acid is labeled incorrectly. The correct label is _____.

Section 2 of 12 – Acid Ionization

Finish the equation below with a single arrow (\rightarrow) or double arrow (\leftrightarrows) based on the animation.

$$HCl + H_2O \qquad H_3O^+ + Cl^-$$

Section 3 of 12 – Acid Ionization

There is another mistake. Correct it in the excerpt below after watching the animation:

"The hydrogen ion is attracted to the partial positive charge on the oxygen atom of water. Since the hydrogen ion has no electrons, it forms a bond with one of the lone pairs of electrons on the oxygen atom of water, forming H₃O⁺."

Section 4 of 12 – Base Ionization

Finish the equation below with a single arrow (\rightarrow) or double arrow (\leftrightarrows) based on the animation.

$$NH_3 + H_2O \qquad NH_4^+ + OH^-$$

Section 5 of 12 – The Amphoteric Nature of Water Circle the correct terms in the bottom two rows.

OH ⁻	H_2	2O	H_3O^+
←			
donates H ⁺ / accepts H ⁺		donates H ⁺ / accepts H ⁺	
acid / base		acid / base	

Section 6 of 12 – Lewis Acids and Bases

Summarize these definitions:

Brønsted-Lowry Acid	donates	
Brønsted-Lowry Base	accepts	
Lewis Acid	accepts	
Lewis Base	donates	

Label the H⁺ and H₂O as Lewis acid & Lewis base:

$$H^+ + H_2O \rightarrow H_3O^+$$

Label the NH₃ and BF₃ as Lewis acid and base: $\begin{array}{ccc}
NH_3 + BF_3 \rightarrow NH_3BF_3 \\
& & & & & & & \\
\hline
O1) & H^2 & + & & & & \\
& & & & & & \\
\end{array}$

Q1)	H^{-}	+	H_2O	$rightharpoonup$ $H_2 + OH$

Q2) CH ₃ COOH +	$H_2O = CH_3COO^- + H_3O^+$

Q3) CH ₃ COO +	$H_3O^+ \leftrightarrows CH$	H_3 COOH + H_2 O

Q4) Water can never act as an acid or a base.

True or False: ______

Notice that AlCl₄ is a "complex ion".

The central atom is always a Lewis _____.

The "ligands" are always Lewis _____.

Section 12 of 12 – Conclusion

Lewis acids are named after:

Lewis acids concern the acceptance or donation of

Lewis dot symbols use "dots" to represent _____.

Brønsted-Lowry acids and bases deal with H⁺ ions also called ______.