Absolute Value Equations

Absolute Value as a Distance:

$$\begin{vmatrix} x-3 \end{vmatrix}$$
 means the distance from 3
 $\begin{vmatrix} x-3 \end{vmatrix} = 2$
 $\Rightarrow 2$ $\Rightarrow 2$

Answer:
$$x = 1$$
 or $x = 5$

$$|x+2| = 1$$
 means $|x-(-2)| = 1$
one unit

Start here

Answer: $x = -3$ or $x = -1$

Draw the number line and solve the absolute value equation:

1.
$$|x-3|=4$$

- 1 -1 -

Answer:

2.
$$|x-1|=2$$

3. |x-6|=2

4. |x+5|=1

Answer:

Answer:

5. |x+3|=3

4

6. |x+2|=4

Answer:

Answer:

Solve Algebraically:

- Get absolute value by itself 1.
- Set up 2 equations 2.

*one without the absolute values

*the other without absolute values and change the sign of the right side.

Check in the original 3.

Example 1:

$$\begin{vmatrix} x-3 \end{vmatrix} = 4$$

 $x-3 = 4$ or $x-3 = -4$
 $\frac{+3}{x} = 7$ $\frac{+3}{x} = -1$

Example 2:

$$\begin{vmatrix} x+2 \end{vmatrix} = 5$$

 $x+2=5$ or $x+2=-5$
 $\frac{-2}{x=3}$ $\frac{-2}{x=-7}$

Check:

$$\begin{vmatrix} x-3 & | & = 4 \\ |7-3 & | & = 4 \end{vmatrix}$$
 $\begin{vmatrix} x-3 & | & = 4 \\ |-1-3 & | & = 4 \end{vmatrix}$ Check $\begin{vmatrix} 4 & | & = 4 \end{vmatrix}$

$$\begin{vmatrix} x-3 \end{vmatrix} = 4$$
 Check: $\begin{vmatrix} x+2 \end{vmatrix} = 5$ $\begin{vmatrix} x+2 \end{vmatrix} = 5$
 $\begin{vmatrix} -1-3 \end{vmatrix} = 4$ $\begin{vmatrix} 3+2 \end{vmatrix} = 5$ $\begin{vmatrix} -7+2 \end{vmatrix} = 5$
 $\begin{vmatrix} 5 \end{vmatrix} = 5$ $\begin{vmatrix} -5 \end{vmatrix} = 5$

Answer: x = 7 or x = -1

Answer: x = 3 or x = -7

Try: |x-1|=21.

2. |x+5|=1

3.
$$|3x-1|=2$$

4.
$$\left| -2x + 5 \right| = 1$$

Find the solution:

AND - WHERE THERE IS 2 LINES (INTERSECTION)

OR - AT LEAST ONE LINE (UNION)

1. AND

Answer:____

2. OR

Answer:

3. AND

Answer:

4. OR

Answer:

5. AND

Answer:

6. OR.

Answer:

$$|x| >$$
means OR

x < # means AND

1. Get the Asbolute Value by itself

- Make TWO inequalities with the correct word OR/AND
 *first inequality just take off the absolute value
 - *second inequality take off the absolute value, flip \Leftrightarrow symbol, and change signs on the right side

$$x > 1$$
 OR $x < -4$

OR means 1 or more lines

Be careful to watch the following:

|x| = NEGATIVE |x| < NEGATIVE |x| > NEGATIVE NO SOLUTION NO SOLUTION INFINITE SOLUTIONS