

**Parallel Circuits Lab - Guided** PSI Physics

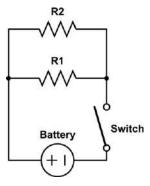
| Name: |  |  |  |
|-------|--|--|--|
| -     |  |  |  |

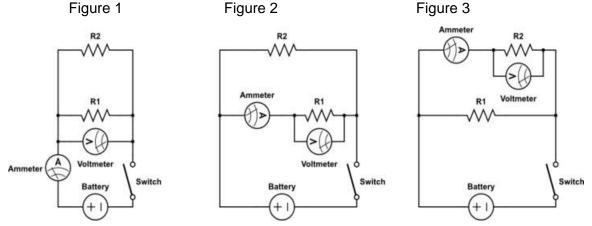
Date:\_\_\_\_\_F

Period:\_\_\_

## Purpose

Students will investigate the relationships between current, voltage, and resistance in both series and parallel circuits.


When resistors are connected in parallel in a circuit, each resistor provides a different path for the electrons to flow, therefore, reduces the total resistance on the current. The total resistance can be found mathematically by applying the equation:  $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ 


#### **Materials**

- Battery
- Connecting wires
- Two resistors
- Switch
- Ammeter
- Voltmeter

#### Procedure

1. Arrange two resistors in parallel in the base circuit seen to the right. You will not be changing the locations of the battery or resisters, but you will be adding and moving the ammeter and voltmeter around the circuit.





- 1. Arrange two resistors in parallel with each other with the ammeter in series before the junction point a and the voltmeter across the two junction points as seen in Figure 1.
  - Record the Current as I<sub>T</sub> and the Voltage as V<sub>T</sub> on the data table. This is the current leaving the battery and the voltage across the resistors.
- 2. Rearrange the ammeter and voltmeter as shown in Figure 2.
  - Record the Current as I<sub>1</sub> and the Voltage as V<sub>1</sub> on the data table. This is the current flowing through the first resistor (R<sub>1</sub>) and the voltage across R<sub>1</sub>.
- 3. Rearrange the ammeter and voltmeter as shown in Figure 3.
  - Record the Current as I<sub>2</sub> and the Voltage as V<sub>2</sub> on the data table. This is the flowing through the second resistor (R<sub>2</sub>) and the voltage across R<sub>2</sub>.

# Parallel Circuit Data Table

| Trial 1 |    | Trial 2        |            |  | Trial 3    |                |
|---------|----|----------------|------------|--|------------|----------------|
| lτ      | VT | I <sub>1</sub> | <b>V</b> 1 |  | <b>I</b> 2 | V <sub>2</sub> |
|         |    |                |            |  |            |                |
|         |    |                |            |  |            |                |

### Analysis

Use Ohm's Law to calculate the resistance for the entire circuit (Requivalent) and for each resister.

| Figure 1                                       | Figure 2                | Figure 3                         |  |  |
|------------------------------------------------|-------------------------|----------------------------------|--|--|
| $\mathbf{R}_{\text{equivalent}} = \frac{V}{I}$ | $R_1 = \frac{V_1}{I_1}$ | $\mathbf{R}_2 = \frac{V_2}{I_2}$ |  |  |
|                                                |                         |                                  |  |  |
|                                                |                         |                                  |  |  |

Use the information in the Data Collection and Analysis Tables to answer the following questions:

1. How is the battery voltage,  $V_T$ , related to the other two voltage drops,  $V_1$  and  $V_2$ ? Write an equation that describes the relationship.

2. How is the current through the battery,  $I_T$ , related to the other two currents,  $I_1$  and  $I_2$ ? Write an equation that describes the relationship.

3. Which of the resistances  $R_1$ ,  $R_2$ , and  $R_{equivalent}$  is smallest?

4. The equivalent resistance, R<sub>equivalent</sub>, for resistances in parallel is:

$$\frac{1}{R_{equivalent}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

- a. Using the values of R<sub>1</sub> and R<sub>2</sub> in your analysis table, calculate R<sub>equivalent</sub>. How does this compare with the value you got from dividing V by I in the Analysis Table?
- b. Is there a way to make R<sub>equivalent</sub> bigger than R<sub>1</sub> or R<sub>2</sub>? If not, why not? Or if so, how?
- 5. A 9V battery is connected to two resistors in parallel ( $R_1 = 10 \Omega$  and  $R_2 = 15 \Omega$ ).
  - a. What is the equivalent resistance, Requivalent, for the circuit?
  - b. What is the current, I, through the circuit? (use V = IR)
  - c. What is the voltage drop,  $V_1$ , across resistor  $R_1$ ? (use V = IR)
- 6. If you add a third resistor in parallel with the other two...
  - a. Will R<sub>equivalent</sub>, increase, decrease or stay the same? Why?
  - b. Does the current, I, increase, decrease or stay the same? Why?
  - c. Does the voltage drop, V<sub>1</sub>, across R<sub>1</sub> increase, decrease or stay the same? Why?