

Name:	
Date:	Period [.]

Purpose

Students will investigate the relationship between current and voltage, creating a graph in order to find the resistance of unknown resisters.

Ohm's law states that if the temperature of a resistor remains constant, the electric current (I) flowing in a circuit is directly proportional to the applied voltage (V) and inversely proportional to the resistance (R) of the circuit: $I = \frac{V}{R}$.

Materials

- Battery (6 or 12 V)
- One voltmeter (or multimeter)
- One ammeter (or multimeter)
- Connecting wires
- Resistance spools
- Switch
- Rheostat / Potentiometer
 For reference, see: http://njc.tl/181

Procedure

- 1. Construct the circuit as shown in the diagram above. Note the following:
 - a) Connect the ammeter in series and the voltmeter in parallel.
 - b) Connect the ammeter and voltmeter with corresponding polarity.
 - c) The arrow on the potentiometer diagram indicates the connection to the sliding piece.
- 2. Leave the switch open until your instructor has checked your circuit and given you permission to close it.
- 3. Slowly move the slider across the potentiometer until the ammeter registers a small current at a mark on the ammeter.
- 4. For this position, measure and record this current and voltage.

 Note: Many ammeters measure current in milliamps. Make sure you are reading your meters properly and recording current in amps and voltage in volts.
- 5. Increment the current four more times recording both the current and voltage in the table below.
- 6. Switch to a new resistor spool and repeat steps 3 5 for two more resisters.

Data

Resis	stor 1
Current (amps)	Voltage (volts)

Resis	stor 2
Current (amps)	Voltage (volts)

Resis	stor 3
Current (amps)	Voltage (volts)

Analysis

Ohms law states $I = \frac{V}{R}$. This can be rewritten as V = RI. Making the analogy to the slope-intercept form of a line (y = mx + b), if we plot voltage on the y-axis and current on the x-axis then the slope of the line will be equivalent to resistance, and the intercept will be through the origin.

- 1. Sketch the graph of Voltage vs. Current for each resistor. Make sure all 3 graphs have the following:
 - Title
 - Axes Labels with quantities and units
 - A best-fit line do not connect points
- 2. If your graph is a straight line, then the relationship described above is true.
 - Were your graphs straight lines?
 - Are current and voltage directly or inversely proportional?
- 3. Calculate the slope of each line in the space below:

Slope of Graph 1:

Slope of Graph 2:

Slope of Graph 3:

Conclusion

1	If you know the actual resistances of the resistors you used, how closely did your values match the actual values?
2	Whether your values matched the actual values or not, explain some reasons why the measured values of resistance might not match the actual values.
In 3	- 5, circle the word that best completes the statement.
3	The current that flows through a resistor is (inversely/directly) proportional to the applied voltage and (inversely/directly) proportional to the resistance of the resistor.
4	While measuring the resistance of a resistor, the voltmeter is always placed in (series/parallel) with the resistor. The ammeter is always placed in (series/parallel) with the resistor.
5	If the voltage across a resistance is increased, the current flowing through the resistance will (increase/decrease). When the resistance of a circuit is increased, the current flowing in the circuit will (increase/decrease).
Appl	ication
	60-watt light bulb has a voltage of 120 volts applied across it and a current of 0.5 amperes through the bulb. What is the resistance of the light bulb?
2. WI	nat current will flow through a 120-ohm resistor if the voltage applied to it is 12 volts?
	resistance of 60 ohms allows 0.4 amperes of current to flow when it is connected across a ry. What is the voltage of the battery?