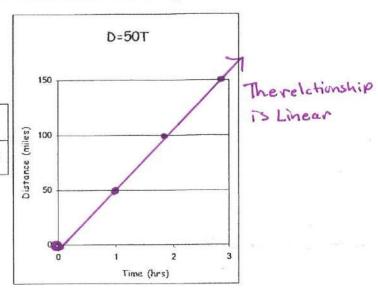
9WP Notes

Vertical Motion Word Problems

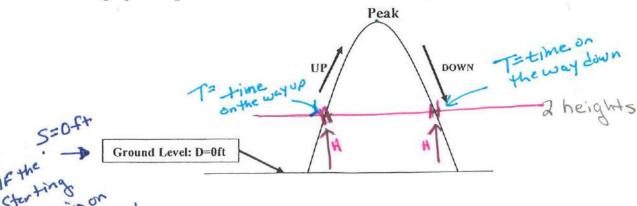
- I. Review Distance Models: The formula used is: D=R.T
 - D= distance


R= rate T= time

Rate is a constant and the relationship is LineAR

Example: A car travels at 50mph. How far will the car travel in 0, 1, 2, 3 hours? Complete the table and graph.

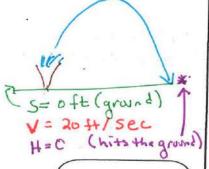
D = 50T 3 Time (hrs) Distance (miles) 100 150 50


DISTANCE - FIND IT KI RATE - 50mph Time - 0, 1, 2, 3 hrs

- II. Vertical motion models describes the height of an object that is has no power to keep it self in the
 - Equation: H = -16T + VT + S (based on units in feet & seconds)
 - H= height of the object (in feet)
 - T= time the object has been in the air (in seconda)
 - · V= INITAL VERTICAL velocity (in ft/second)
 - S= INITIAL HEIGHT (in ft)

takes into account the effect of gravity but ignores other, less significant, factors such as air resistance.

O Vertical motion problems do NOT have a constant rate and the shape of the graph is a parabola.


9.4

Solve Polynomial Equations in Factored Form

Your Notes

KEYINFO

Looking for time (+)

The solution t = 0 means that before the water is sprayed, its height above the ground is 0 feet.

Example 4 Solve a multi-step problem

Fountain A fountain sprays water into the air with an initial vertical velocity of 20 feet per second. After how many seconds does it land on the ground?

Solution

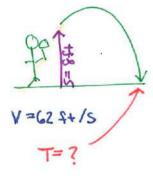
Step 1 Write a model for the water's height above ground.

$$h = -16t^{2} + vt + s$$
Vertical motion model
$$h = -16t^{2} + 20t + 0 \quad v = 20 \quad \text{and } s = 0$$

$$h = -16t^{2} + 20 \quad \text{Simplify.}$$

Step 2 Substitute O+ for h. When the water lands, its height above the ground is O feet. Solve for t.

$$O = -16t^2 + 20T$$
Substitute O for h.
$$O = -4r(4T - s)$$
Factor right side.
$$-4T = 0 or 4T - s = 0$$
Zero-product property
$$T = 0 or 5/4$$
Solve for t.


The water lands on the ground 1.25 seconds after it is sprayed.

Sactor $ax^2 + bx + c$

Goal • Factor trinomials of the form $ax^2 + bx + c$.

Your Notes

Keyinfo

5=84 H= 0ff (when the bell hits the ground).

Example 4 Write and solve a polynomial equation

Tennis An athlete hits a tennis ball at an initial height of 8 feet and with an initial vertical velocity of 62 feet per second.

- a. Write an equation that gives the height (in feet) of the ball as a function of the time (in seconds) since it left the racket.
- b. After how many seconds does the ball hit the ground?

Solution

a. Use the $\sqrt{\text{ERTICAL MOTION Model}}$ to write an equation for the height h (in feet) of the ball.

$$h = -16t^2 + vt + s$$
 $h = -16t^2 + 62t + 8$
 $h = -16t^2 + 62t + 8$

b. To find the number of seconds that pass before the ball lands, find the value of t for which the height of the ball is _o_. Substitute _o for h and solve the equation for t.

$$O = -16t^2 + 62t + 8$$
Substitute O for h.
$$O = -2(8T^2 - 31T - 4)$$
Factor out -2 .
$$O = -2(8T + 1)(T - 4)$$
Factor the trinomial.
$$8T + 1 = 0 \text{ or } T - 4 = 0$$
Zero-product property
$$O = -4 + 8 = 0$$
Factor out -2 .
$$O = -2(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -2(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -2(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .
$$O = -3(8T + 1)(T - 4)$$
Factor out -3 .

9.7

Factor Special Products

Goal . Factor special products.

Example 4 Solve a vertical motion problem

Falling Object A brick falls off of a building from a height of 144 feet. After how many seconds does the brick land on the ground?

Solution

Use the vertical motion model. The brick fell, so its initial vertical velocity is \bigcirc . Find the value of time t (in seconds) for which the height h (in feet) is \bigcirc .

$$h = -16T^{2} + \sqrt{1+8}$$

$$O = -16T^{2} + OT + 144$$

$$O = -16T^{2} + OT + 144$$

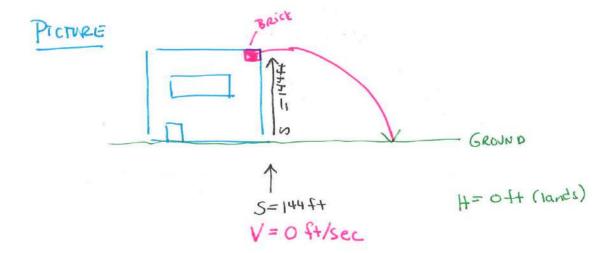
$$O = -16(T^{2} + 144)$$

$$O = -16(T^{2} - q)$$

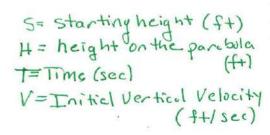
$$O = -16(T^{2} + 144)$$

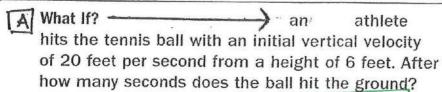
$$O = -16(T^{2} + 144)$$

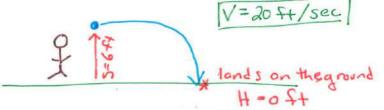
$$O = -16(T^{2} + 144)$$

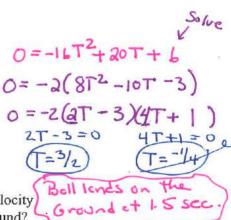

$$O = -16(T^{2} + OT + 144)$$

$$O = -16$$


T-3=0 or T+3=0 Zero-product property

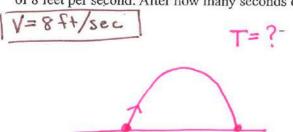

Solve for t.


The brick lands on the ground 3seconds after it falls.



Memorize
$$H = -16T^2 + VT + S$$

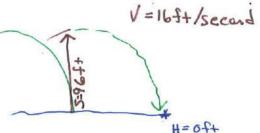
function $h(t) = -16T^2 + VT + S$
Checkpoint Complete the following exercise.



3 seconds

Jump Rope A child jumping rope leaves the ground at an initial vertical velocity of 8 feet per second. After how many seconds does the child land on the ground?

$$0 = -16T^{2} + 8T \pm 0^{2}$$


$$0 = -876T - 1)$$

$$-8T = 0$$

$$T = 0$$

$$T = 1/2$$
Child lands at . 5 seconds

Cliff Diving A cliff diver jumps from a ledge 96 feet above the ocean with an initial upward velocity of 16 feet per second. How long will it take until the diver enters the water?

Tennis Ball For a science experiment, you toss a tennis ball from a height of 32 feet with an initial upward velocity of 16 feet per second. How long will it take the tennis ball to reach the ground?

$$O = -16T^{2} + 16T + 32$$

$$O = -16(T^{2} + T^{2})$$

$$O = -16(T^{2} + T^{2})$$

$$O = -16(T^{2} + T^{2})$$

$$T = 2 \sec_{x} - 1 \sec_{x}$$
The bell hits the grand at 2 se conds