Warm up

Holt Geometry

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Objectives

Develop and apply the formulas for the areas of triangles and special quadrilaterals.

Solve problems involving perimeters and areas of triangles and special quadrilaterals.

Remember!

The diagonals of a rhombus or kite are perpendicular, and the diagonals of a rhombus bisect each other.

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Example 3A: Finding Measurements of Rhombuses and Kites

- Find d_2 of a kite in which $d_1 = 14$ in. and A = 238 in².
 - $A = \frac{1}{2}d_{1}d_{2}$ Area of a kite $238 = \frac{1}{2}(14)d_{2}$ Substitute 238 for A and 14 for d₁. $34 = d_{2}$ Solve for d₂. $d_{2} = 34$ Sym. Prop. of =

Example 3B: Finding Measurements of Rhombuses and Kites

Find the area of a rhombus.

$$A = \frac{1}{2}d_1d_2$$
 Area of a rhombus

$$A = \frac{1}{2} (8x + 7) (14x - 6)$$

Substitute (8x+7) for d_1 and (14x-6) for d_2 .

 $d_2 = (14x - 6)$ cm

$$A = \frac{1}{2} \left(112x^2 + 50x - 42 \right)$$

Multiply the binomials (FOIL).

$$A = (56x^{2} + 25x - 21) \text{ cm}^{2} \text{ Distrib. Prop.}$$

Example 3C: Finding Measurements of Rhombuses and Kites

Find the area of the kite

Step 1 The diagonals d_1 and d_2 form four right triangles. Use the Pythagorean Theorem to find x and y.

35 in.

$28^2 + y^2 = 35^2$	$21^2 + x^2 = 29^2$
$y^2 = 441$	$x^2 = 400$
<i>y</i> = 21	<i>x</i> = 20

Example 3C Continued

Step 2 Use d_1 and d_2 to find the area. d_1 is equal to x + 28, which is 48. Half of d_2 is equal to 21, so d_2 is equal to 42.

 $A = \frac{1}{2}d_{1}d_{2}$ Area of kite $A = \frac{1}{2}(48)(42)$ Substitute 48 for d_{1} and 42 for d_{2} .

 $A = 1008 \text{ in}^2$ Simplify.

Lesson Quiz: Part II

1. the area of the rhombus

 $A = 1080 \text{ m}^2$

Holt Geometry

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.