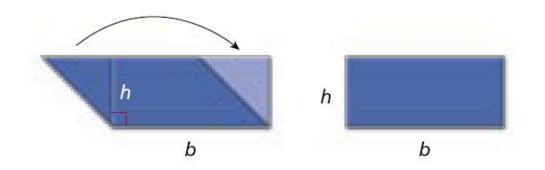
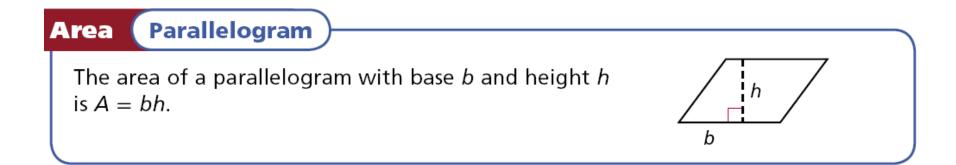
Warm Up

Find the unknown side length in each right triangle with legs *a* and *b* and hypotenuse *c*.

1.
$$a = 20, b = 21$$
 $c = 29$

3.
$$a = 20, c = 52$$
 $b = 48$




Develop and apply the formulas for the areas of triangles and special quadrilaterals.

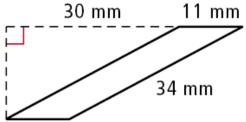
Solve problems involving perimeters and areas of triangles and special quadrilaterals. Recall that a rectangle with base b and height h has an area of A = bh.

You can use the Area Addition Postulate to see that a parallelogram has the same area as a rectangle with the same base and height.

A triangle is cut off one side and translated to the other side.

Remember that rectangles and squares are also parallelograms. The area of a square with side s is $A = s^2$, and the perimeter is P = 4s.

Remember!


The height of a parallelogram is measured along a segment perpendicular to a line containing the base.

The perimeter of a rectangle with base b and height h is P = 2b + 2h or P = 2(b + h).

Example 1A: Finding Measurements of Parallelograms

Find the area of the parallelogram.

Step 1 Use the Pythagorean Theorem to find the height *h*.

$$30^2 + h^2 = 34^2$$

 $h = 16$

Step 2 Use *h* to find the area of the parallelogram.

A = bh	Area of a parallelogram
A = 11(16)	Substitute 11 for b and 16 for h.
$A = 176 \text{ mm}^2$	Simplify.

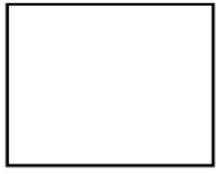
Example 1B: Finding Measurements of Parallelograms

Find the height of a rectangle in which b = 3 in. and $A = (6x^2 + 24x - 6)$ in².

A = bh Area of a rectangle

- $6x^{2} + 24x 6 = 3h$ Substitute $6x^{2} + 24x 6$ for A and 3 for b.
- $3(2x^2 + 8x 2) = 3h$ Factor 3 out of the expression for A.
 - $2x^2 + 8x 2 = h$ Divide both sides by 3.

 $h = (2x^2 + 8x - 2)$ in. Sym. Prop. of =



Example 1C: Finding Measurements of Parallelograms

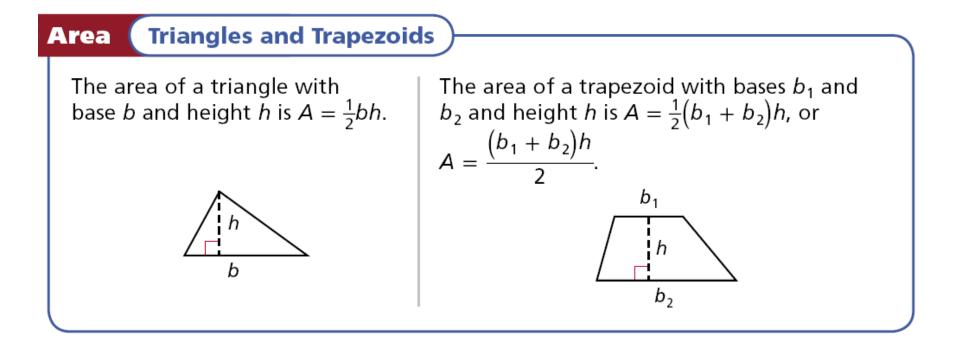
Find the perimeter of the rectangle, in which $A = (79.8x^2 - 42)$ cm²

Step 1 Use the area and the height to find the base.

A = bh Area of a rectangle

21 cm

 $79.8x^2 - 42 = b(21)$ Substitute $79.8x^2 - 42$ for A and 21 for h.


 $3.8x^2 - 2 = b$ Divide both sides by 21.

Example 1C Continued

Step 2 Use the base and the height to find the perimeter.

P = 2b + 2h Perimeter of a rectangle $P = 2(3.8x^{2} - 2) + 2(21)$ $Substitute 3.8x^{2} - 2 for b$ and 21 for h.

 $P = (7.6x^2 + 38) \text{ cm}$ Simplify.

Holt Geometry

-

Example 2A: Finding Measurements of Triangles and Trapezoids

Find the area of a trapezoid in which $b_1 = 8$ in., $b_2 = 5$ in., and h = 6.2 in.

$$A = \frac{1}{2}(b_{1} + b_{2})h \quad Area \ of \ a \ trapezoid$$
$$A = \frac{1}{2}(8 + 5)(6.2) \quad Substitute \ 8 \ for \ b_{1}, \ 5 \ for \ b_{2}, \\and \ 6.2 \ for \ h.$$

 $A = 40.3 \text{ in}^2$ Simplify.

Example 2B: Finding Measurements of Triangles and Trapezoids Find the base of the triangle, in which $A = (15x^2) \text{ cm}^2$.

 $A=\frac{1}{2}bh$

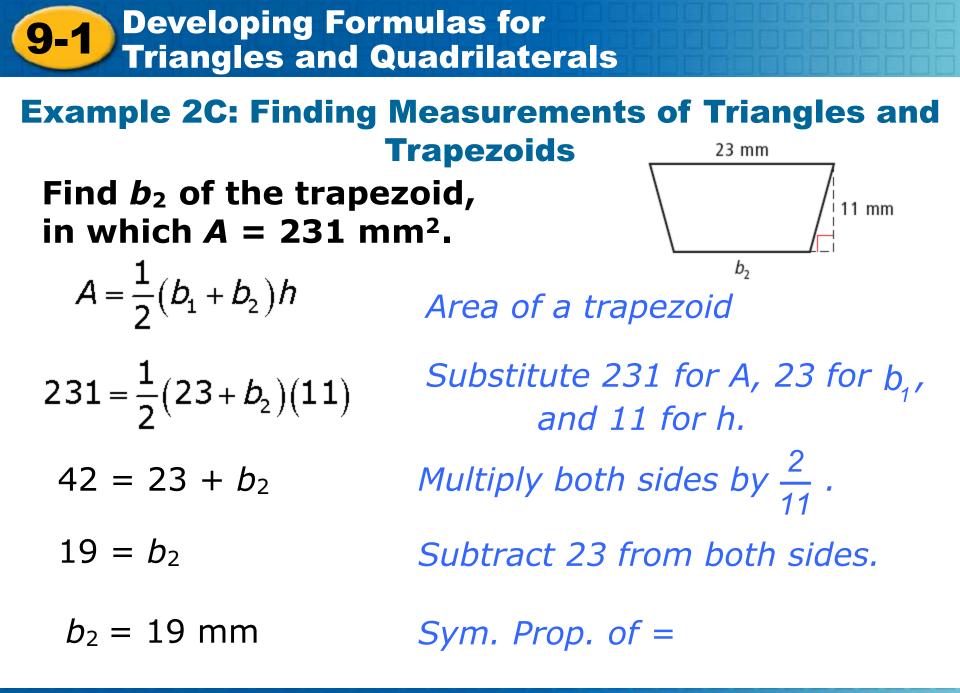
Area of a triangle

 $15x^2 = \frac{1}{2}b(5x)$

Substitute 15x² for A and 5x for h.

 $15x = \frac{5}{2}b$

6x = b


Divide both sides by x.

Multiply both sides by $\frac{2}{5}$.

b = 6x cm Sym.

Sym. Prop. of =

9-1

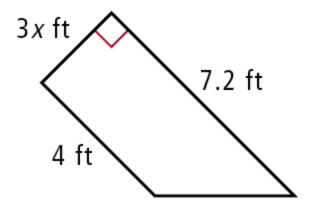
Lesson Quiz: Part I

Find each measurement.

1. the height of the parallelogram, in which $A = 182x^2 \text{ mm}^2$

20*x* mm

2. the perimeter of a rectangle in which h = 8 in. and A = 28x in²


P = (16 + 7x) in.

Lesson Quiz: Part II

3. the area of the trapezoid $A = 16.8x \text{ ft}^2$

4. the base of a triangle in which h = 8 cm and A = (12x + 8) cm²

b = (3x + 2) cm

