Answer Key

Lesson 8.6

Challenge Practice

1. True; *Sample answer:* If more than 2 angles were acute, you would no longer have a trapezoid. You would have a quadrilateral.

2. False; *Sample answer:* A rectangle has 2 congruent opposite angles, but is *not* a kite.

3. True; *Sample answer:* If a quadrilateral has a pair of opposite angles that are congruent, then the quadrilateral is not a trapezoid, it is a kite.

4. False; *Sample answer:* You can have 3 congruent angles and still have a kite.

5. False; *Sample answer:* Although in most cases *STUV* would be a kite, it could also be a rhombus when $\overline{SV} \cong \overline{UV} \cong \overline{ST} \cong \overline{TU}$.

- 6. Trapezoid; Answers will vary.
- 7. Rhombus; Answers will vary.
- 8. Kite; Answers will vary.
- **9.** Sample Answer:

Statements	Reasons
1. <i>EFGH</i> is a	1. Given
quadrilateral, $\angle HEF$	
and $\angle FGH$ are right	
angles, and \overline{EG}	
bisects $\angle HEF$ and	
$\angle FGH.$	
$2. \ m \angle HEG = \frac{1}{2}(90^\circ),$	2. Definition of an
$m \angle FEG = \frac{1}{2}(90^\circ),$	angle bisector
$m \angle HGE = \frac{1}{2}(90^\circ),$	
and	
$m \angle FGE = \frac{1}{2}(90^\circ)$	
3. $m \angle HEG = 45^\circ$, $m \angle FEG = 45^\circ$,	3. Multiplication
3. $m \angle HEG = 45^\circ$, $m \angle FEG = 45^\circ$,	3. Multiplication

Answer Key

4. Angle Add. Post.
5. Substitution
6. Subtraction
7. The triangle is a
right triangle with
cong. base angles.
8. Definition of a
quadrilateral with
4 right angles
9. The legs of an
isosceles triangle
are congruent.
10. Substitution
11. Def. of a square
(all right angles
and all sides
congruent)

10. *Sample answer:*

Given: $\overline{IJ} \cong \overline{KL}$ and $\angle IJK \cong \angle JKL$. Use the Reflexive Property to show $\overline{JK} \cong \overline{JK}$. By the SAS Congruence Postulate, show $\triangle IJK \cong \triangle LKJ$. Because $\triangle IJK \cong \triangle LKJ$, show $\overline{JL} \cong \overline{KI}$ and $\angle 1 \cong \angle 2$ by corresponding parts. By the Base Angles Converse Theorem (from $\triangle JMK$) $\overline{JM} \cong \overline{KM}$. Using the Segment Addition Postulate, JM + ML = JL and KM + MI = KI. $\overline{JL} \cong \overline{KI}$ and $\overline{JM} \cong \overline{KM}$. Use the property of equality and substitution to state $\overline{ML} \cong \overline{MI}$. Now $\angle 5 \cong \angle 6$ by the Base Angles Theorem (of $\triangle MIL$). $\angle 3 \cong \angle 4$ by the Vertical Angles Congruence Theorem. $\angle 1$, $\angle 2$, and $\angle 3$ make up $\triangle JMK$ and $\angle 4$, $\angle 5$, and $\angle 6$ make up $\triangle MIL$. So, $m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ$ and $m\angle 4 + m\angle 5 + m\angle 6 = 180^\circ$ by the Angle Addition Postulate. Using substitution, $m\angle 2 + m\angle 2 + m\angle 3 = m\angle 3 + m\angle 5 + m\angle 5$, $2m\angle 2 = 2m\angle 5$, $m\angle 2 = m\angle 5$ (using subtraction, addition, and division properties of equality). Since $\angle 2 \cong \angle 5$, use the Alternative Interior Angles Converse to prove $\overline{JK} \| \overline{LI}$.

11. *Sample answer:*

Use the same process and result from the previous exercise (10) to determine $\overline{OP} \parallel \overline{QR}$ and $\overline{OR} \parallel \overline{PQ}$. Because there are two sets of opposite lines that are parallel, OPQR is a parallelogram. Because OPQR is a parallelogram, $\overline{OP} \cong \overline{QR}$ and $\overline{OR} \cong \overline{PQ}$. $\overline{PQ} \cong \overline{QR}$ because MNPQR is a regular pentagon (all sides of a regular pentagon are congruent). Using substitution, $\overline{OR} \cong \overline{QR}$ and $\overline{OP} \cong \overline{PQ} \cong \overline{QR} \cong \overline{RO}$, which means OPOR is a rhombus (all sides are congruent).