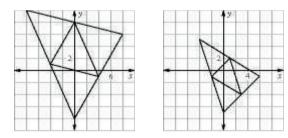
Answer Key

Lesson 8.3

Practice Level C

1. 5 **2.** 8 **3.** 14 **4.** 7 **5.** 12 **6.** 6 **7.** yes **8.** yes **9.** no **10.** no **11.** no **12.** yes **13.** yes **14.** yes **15.** slope of \overline{AB} = slope of \overline{CD} = -1 and slope of \overline{BC} = slope of \overline{DA} = 5, so *ABCD* is a \Box by definition. **16.** $AB = CD = \sqrt{17}$ and $BC = DA = 3\sqrt{5}$, so *ABCD* is a \Box by Theorem 8.7. **17.** (8, 6), (0, -8), **18.** (6, -1), (0, -7), and (-8, 10) and (-4, 5)



19. Regular hexagon *JKLMNO*; Definition of regular polygon; $\triangle OJK \cong \triangle NML$; Corresponding parts of $\cong \triangle$'s are \cong .; $\overline{ON} \cong \overline{KL}$; Theorem 8.7

20.

Statements	Reasons
1. VWKJ and SJRU	1. Given
are \square . 2. $\angle W \cong \angle J$	2. Opposite 🖄
$\angle J \cong \angle U$	of a \square are \cong .
3. $\angle W \cong \angle U$	3. Transitive Prop.
	of≅

21. Because *ABCD* is a \square , opposite sides are \parallel .

So $\overline{AD} \parallel \overline{BC}$ and segments contained within \parallel segments are also \parallel so $\overline{AE} \parallel \overline{BF}$. We know opposite sides of \Box are \cong so $\overline{AD} \cong \overline{BC}$. Since *E* and *F* are given as midpoints we can show $\overline{AE} \cong \overline{ED}$ and $\overline{CF} \cong \overline{FB}$, so through Segment Addition Postulate and Division Property of Equality we can show $\overline{AE} \cong \overline{FB}$. So quadrilateral *ABFE* is a \Box since one pair of opposite sides is \parallel and \cong .