Warm Up

Use $\triangle ABC$ for Exercises 1-3.

1. If
$$a = 8$$
 and $b = 5$, find $c \cdot \sqrt{89} B$

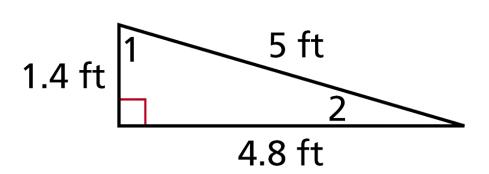
2. If
$$a = 60$$
 and $c = 61$, find b .

3. If
$$b = 6$$
 and $c = 10$, find sin B . 0.6

Find AB.

4.
$$A(8, 10), B(3, 0)$$
 5 $\sqrt{5}$

5.
$$A(1, -2)$$
, $B(2, 6)$ $\sqrt{65}$


Objective

Use trigonometric ratios to find angle measures in right triangles and to solve real-world problems.

Example 1: Identifying Angles from Trigonometric Ratios

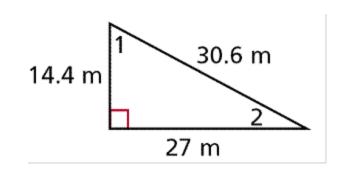
Use the trigonometric

ratio
$$\cos A = \frac{24}{25}$$
 to determine which angle of the triangle is $\angle A$.

$$\cos A = \frac{\text{adj. leg}}{\text{hyp.}}$$

 $\cos A = \frac{\text{adj. leg}}{\text{hyp.}}$ Cosine is the ratio of the adjacent leg to the hypotenuse.

$$\cos \angle 1 = \frac{1.4}{5} = \frac{7}{25}$$
 The leg adjacent to $\angle 1$ is 1.4. The hypotenuse is 5.


$$\cos \angle 2 = \frac{4.8}{5} = \frac{24}{25}$$
 The leg adjacent to $\angle 2$ is 4.8. The hypotenuse is 5.

Since
$$\cos A = \cos \angle 2$$
, $\angle 2$ is $\angle A$.

Check It Out! Example 1a

Use the given trigonometric ratio to determine which angle of the triangle is $\angle A$.

$$\sin A = \frac{8}{17}$$

$$\sin A = \frac{\text{opp. leg}}{\text{hyp.}}$$

Sine is the ratio of the opposite leg to the hypotenuse.

$$\sin \angle 1 = \frac{27}{30.6} = 0.88$$

The leg adjacent to $\angle 1$ is 27. The hypotenuse is 30.6.

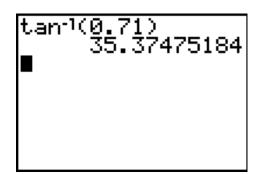
$$\sin \angle 2 = \frac{14.4}{30.6} = 0.47$$

 $\sin \angle 2 = \frac{14.4}{30.6} = 0.47$ The leg adjacent to $\angle 2$ is 14.4. The hypotenuse is 30.6.

Since $\sin \angle A = \sin \angle 2$, $\angle 2$ is $\angle A$.

Example 2: Calculating Angle Measures from Trigonometric Ratios

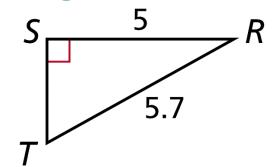
Use your calculator to find each angle measure to the nearest degree.


A.
$$\cos^{-1}(0.87)$$

$$\cos^{-1}(0.87) \approx 30^{\circ}$$

B.
$$\sin^{-1}(0.85)$$

$$\sin^{-1}(0.85) \approx 58^{\circ}$$


C.
$$tan^{-1}(0.71)$$

$$tan^{-1}(0.71) \approx 35^{\circ}$$

Example 3: Solving Right Triangles

Find the unknown measures. **Round lengths to the nearest** hundredth and angle measures to the nearest degree.

Method 1: By the Pythagorean Theorem,

$$RT^2 = RS^2 + ST^2$$

$$(5.7)^2 = 5^2 + ST^2$$

So
$$ST = \sqrt{7.49} \approx 2.74$$
.

$$m\angle R = \cos^{-1}\left(\frac{5}{5.7}\right) \approx 29^{\circ}$$

Since the acute angles of a right triangle are complementary, $m \angle T \approx 90^{\circ} - 29^{\circ} \approx 61^{\circ}$.

Example 3 Continued

Method 2:

$$m\angle R = \cos^{-1}\left(\frac{5}{5.7}\right) \approx 29^{\circ}$$

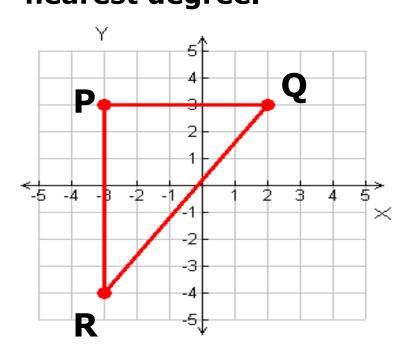
Since the acute angles of a right triangle are complementary, $m \angle T \approx 90^{\circ} - 29^{\circ} \approx 61^{\circ}$.

$$\sin R = \frac{ST}{5.7}$$
, so $ST = 5.7 \sin R$.

$$ST \approx 5.7 \sin \left[\cos^{-1} \left(\frac{5}{5.7} \right) \right] \approx 2.74$$

Check It Out! Example 3

Find the unknown measures. **Round lengths to the nearest** hundredth and angle measures to the nearest degree.


Since the acute angles of a right triangle are complementary, $m\angle D = 90^{\circ} - 58^{\circ} = 32^{\circ}$.

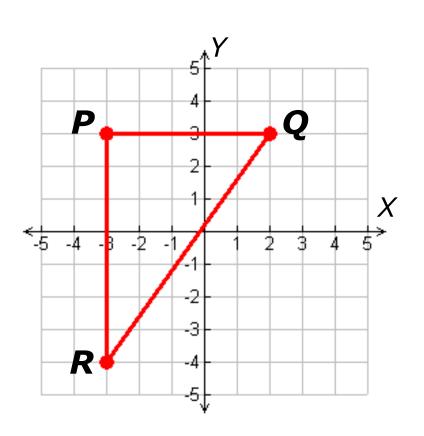
$$tan32^{\circ} = \frac{EF}{14}$$
, so $EF = 14$ tan 32° . $EF \approx 8.75$
 $DF^{2} = ED^{2} + EF^{2}$
 $DF^{2} = 14^{2} + 8.75^{2}$

 $DF \approx 16.51$

Example 4: Solving a Right Triangle in the Coordinate Plane

The coordinates of the vertices of $\triangle PQR$ are P(-3, 3), Q(2, 3), and R(-3, -4). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

Step 1 Find the side lengths. Plot points P, Q, and R.


$$PR = 7$$
 $PQ = 5$

By the Distance Formula,

$$QR = \sqrt{(-3-2)^2 + (-4-3)^2}$$
$$= \sqrt{(-5)^2 + (-7)^2}$$
$$= \sqrt{25 + 49} = \sqrt{74} \approx 8.60$$

Example 4 Continued

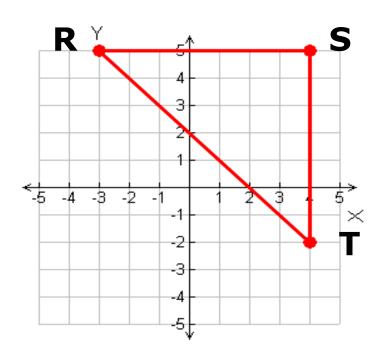
Step 2 Find the angle measures.

$$m\angle P = 90^{\circ} \overline{PQ}$$
 and \overline{PR} are \bot .

PR is opp. $\angle Q$,

and \overline{PQ} is adj. to $\angle Q$.

$$\mathsf{m}\angle Q = \mathsf{tan}^{-1}\left(\frac{7}{5}\right) \approx 54^{\circ}$$


The acute $\angle s$ of a rt. \triangle are comp.

$$m\angle R \approx 90^{\circ} - 54^{\circ} \approx 36^{\circ}$$

Check It Out! Example 4

The coordinates of the vertices of $\triangle RST$ are R(-3, 5), S(4, 5), and T(4, -2). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

Step 1 Find the side lengths. Plot points R, S, and T.

$$RS = ST = 7$$

By the Distance Formula,

$$RT = \sqrt{(4 - (-3))^2 + (-2 - 5)^2}$$
$$= \sqrt{(7)^2 + (-7)^2}$$

$$=\sqrt{49+49}=7\sqrt{2}\approx 9.90$$

Check It Out! Example 4 Continued

Step 2 Find the angle measures.

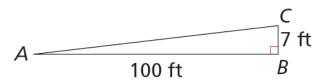
$$m \angle S = 90^{\circ}$$

$$m \angle T = \tan^{-1} \left(\frac{7}{7} \right) = 45^{\circ}$$

$$m\angle R \approx 90^{\circ} - 45^{\circ} \approx 45^{\circ}$$

$$\overline{RS}$$
 and \overline{ST} are \perp .

$$\overline{RS}$$
 is opp. $\angle T$, and \overline{ST} is adj. $\angle T$.


The acute $\angle s$ of a rt. \triangle are comp.

Example 5: Travel Application

A highway sign warns that a section of road ahead has a 7% grade. To the nearest degree, what angle does the road make with a horizontal line?

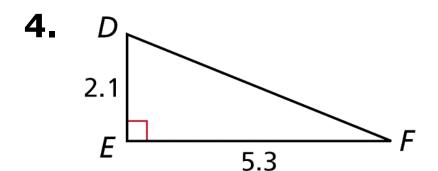
$$7\% = \frac{7}{100}$$
 Change the percent grade to a fraction.

A 7% grade means the road rises (or falls) 7 ft for every 100 ft of horizontal distance.

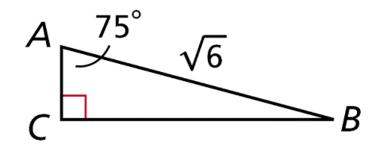
$$m\angle A = \tan^{-1}\left(\frac{7}{100}\right) \approx 4^{\circ}$$

Draw a right triangle to represent the road.

∠A is the angle the road makes with a horizontal line.


Lesson Quiz: Part I

Use your calculator to find each angle measure to the nearest degree.


- **1.** cos⁻¹ (0.97) ₁₄°
- **2.** tan⁻¹ (2) 63°
- 3. sin⁻¹ (0.59) 36°

Lesson Quiz: Part II

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

$$DF \approx 5.7$$
; m $\angle D \approx 68^{\circ}$; m $\angle F \approx 22^{\circ}$

$$AC \approx 0.63$$
; $BC \approx 2.37$; m $\angle B = 15^{\circ}$

Lesson Quiz: Part III

6. The coordinates of the vertices of ΔMNP are M(-3, -2), N(-3, 5), and P(6, 5). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

```
MN = 7; NP = 9; MP \approx 11.40; m \angle N = 90^{\circ};
m\angle M \approx 52^{\circ}; m\angle P \approx 38^{\circ}
```