Guided Notes – 8.3 Estimating a Population Mean when "<u>σ KNOWN</u>"

- 1. Inference about population proportions (P) based on Categorica variables.
 - Proporations are 2's.
- 2. Inference about population means (ML) based on QUANTITATIVE variables.
 - Means are <u>Qverages</u>.

General form to calculate a confidence interval is on the <u>Green Sheet</u>: statistic ± (critical value) • (standard deviation of the statistic)

3. What is the formula for a 1-sample Z-interval for a population mean?

- a) What statistic will be used to calculate this confidence interval? X 5ample mean
- b) What is the critical value?
- c) What part of this formula is the margin of error (ME)?
- d) What conditions are required?
 - 1. RANDOM SRS OR RANDOMIZED Experiment
 - 2. INDEPENDENT Sampling without replacement of must meet 10% condition.
 - 3. NORMAL POPULATION WAS NORMAL OR CLT(n),30)
 - 4. Plus you must know the population standard deviction (σ)

But we DO use the Z-statistic to estimate ______ Sample Size !

- 5. Describe the three steps for choosing a sample size for a desired margin of error when estimating μ .
 - 1) GET A REASONABLE VALUE FOR THE Population S.D. (6) from an earlier Pilot study.
 - 2 Decide on your Confidence LEVEL (c) and find the critical value Z*.
 - 3 Decide on your desired Margin of Error (ME)

6. Complete the Check Your Undertanding "Monkeys" -- page 501-502.

Complete the Check Your Undertandi	ng Monkeys page 501-502.
1) Define population parameter	1 THETRUE MEAN CHOLESTEROL OF
37-00/800	A SPECIFIC MUNKEY
Get information to estimate the sample size	-mald!
	CL= 953 z*= 1.96 = 5mg d ME= 1 mg/d1
3) Use formula used to determine the sample size <i>n</i> for a population mean:	$z * \frac{\sigma}{\sqrt{n}} \le ME$. Solve for n .
4) Substitute numbers and clearly show all steps to calculate the sample size <i>n</i>	√n (1.96 * 5 ≤ 1)√n
	1.96*5 4 17
	(9.8)2(In)2
	96.04 ≤ n
	G/n 3 96.04
	ROUND UP ALWAYS
	when est. n
5) Always round up to next whole number to ensure ME is met.	We need to sample 97 MONKEYS.

7. It is the size of the <u>Semple size (n)</u> that determines the margin of error. The size of the <u>Population (N)</u> does not influence the sample size we need. This is true as long as the population <u>is much larger than Sample (10% Consition)</u>

Guided Notes – 8.3 Estimating a Population Mean when "<u>σ KNOWN</u>"

8. What is the standardized value of the z-statistic?

$$Z = \frac{X - \mu}{6/\sqrt{n}}$$

a) See Figure 8.11 to understand this new z-statistic

- b) When we don't know "o," we estimate it using the <u>Sample standard deviation</u> (sx) creating a new statistic called the "t-statistic."
- 9. SKIP "Bingo" Actvity
- 10. What is the fromula for the "t-statistic"?

$$t = \frac{\overline{x} - \mu}{s_x/\sqrt{n}}$$

a) How do you calculate the degrees of freedom for a t distribution?

See Figure 8.13 to understand the t-statistic

df=9; and t-distrib. with df=2.

b) Sketch normal distribution;t-distrib. with c) Describe the similarities between a standard normal distribution and a t distribution.

d) Describe the differences between a standard normal distribution and a t distribution.

The spreed is wider for the t-distrib. Notice "t" shorter and wider and the "t" has larger area in the tails.

- e) What happens to the t distribution as the degrees of freedom increase? As df (and semple size -n) increase, the distribution for "t" approaches the standard normal distribution.
- 11. How do you find the critical value t* using TI84? You only need to know how to use Table B if you * Need to sample size (n) and CL. have a TI83.

12. Check Your Understanding -- page 507 (use TI84, sketch the graph, answers in back of book)

13) What is the formula for the standard deviation of the sampling distribution of the sample mean \bar{x} ?

$$6\overline{\chi} = \frac{6}{\sqrt{n}}$$

14) What is the standard error of the sample mean \bar{x} ?

$$SE(x) = \frac{Sx}{\sqrt{n}}$$

15. What is the formula for a <u>1-sample t- interval for a population mean?</u>

$$\overline{X} + t_{n-1} \cdot \left(\frac{s_x}{\sqrt{n}}\right)$$

- a) What statistic will be used to calculate this confidence interval?
- b) What is the critical value? \pm^*
- c) What part of this formula is the margin of error (ME)? __

16. What conditions are required for a 1-sample t- interval for a population mean?

- R ANDOM
- O SRS N = OR
 O Randomized Experiment (w/ Rondomly assignED TREATMENTS)
- NORMAL
 - O THE POPULATION WAS STATED TO HAVE A NORMAL DISTERBUTION, Large Somple - CLT (n7,30)
- · INDEPENDENT

SAMPLING WITHOUT REPLACEMENT MUST Check 10 % Condition - 10n = N or

- 17. Walk through example "Video Screen Tension."
 - You do not need to write the problem.
 - Enter the data and use your calculator to replicate all steps. See "Technology Corner" page 514.
 - Your Notes:

DO PROBLEM CALCULATING CI BY HAND AND CHECK WITH TI84 (STAT) TESTS > 8: TInterval

18. "Auto Pollution" example is optional. Your Notes:

19. What is a "Robust" procedure?

PROCEDURES THAT ARE NOT STRONGLY AFFECTED WHEN A CONDITION FOR USING THEM IS VIOLATED.

WE CAN USE THE T-PROCEDURE AS LONG AS THE SHAPE IS SYMMETRIC WITH NO OUTLIERS OR STRONG.

When are t-procedures NOT robust?

SKEWNESS.

20. Describe the 2 different normal conditions when using t-procedures:

- Small SAMPLES (n<15 and n<30)
 - · YOU MUST GRAPH THE DATA (HISTOGRAM) TO
 - WITH NO OUTLIERS OR STRONG SKEWNESS
- · LARGE SAMPLES (N≥30) TIP: OVERLAY THE BOX PLOT TO

BASED ON CLT, WHEN THE SAMPLE IS SUFFICIENTLY LARGE (N > 30), THE DISTRIBUTION

21. Walk through example "People, Trees, and Flowers." Your Notes:

NORMAL