Answer Key

Lesson 8.3

Challenge Practice

1. Sample answer:

First, we know $\overline{AF} \parallel \overline{CD}$, $\overline{AB} \parallel \overline{ED}$, and $\overline{BC} \parallel \overline{FE}$.

Next, draw \overline{BE} parallel to \overline{CD} , \overline{CF} parallel to \overline{AB}

and \overline{AD} parallel to \overline{BC} and \overline{FE} . Label the

intersection point G.

Make sure $\overline{BC} \cong \overline{GD}$, $\overline{GD} \cong \overline{FE}$, and $\overline{AB} \cong \overline{FG}$. Because you now have one pair of opposite sides of each quadrilateral congruent and parallel, the quadrilaterals are parallelograms.

2. *PTRU* is a parallelogram. *Sample answer*:

It is given that *PQRS* and *QTSU* are

parallelograms. Because the diagonals of a

parallelogram bisect each other, PX = RX and

TX = UX. Because \overline{PR} and \overline{TU} are diagonals of PTRU that bisect each other, PTRU is a parallelogram.

3. Sample answer: Use the compass to measure the length of \overline{AB} . With that measure, draw a circle with center C. Use the compass to measure the length of \overline{BC} . With that measure, draw a circle with center A. Now label the bottom point of intersection x. Next connect B to x. The point that passes through \overline{AC} should be labeled M so that \overline{BM} is a median.

4. Sample answer:

Given: ABCD is a

parallelogram

Prove: If segments are

drawn connecting the

midpoints of the adjacent sides of a parallelogram, then another parallelogram is formed that has one-half the area of the original parallelogram.

Step 1: Find the area of ABCD.

Area = (base)(height) =
$$2x(2y) = 4xy$$

Step 2:

Area of EFGH = Area of $\triangle EFG$ + Area of $\triangle GHE$ = $\frac{1}{2}(2x)(y) + \frac{1}{2}(2y)(y) = xy + xy = 2xy$

Step 3: The area of *EFGH* is 2xy which is $\frac{1}{2}$ the area of *ABCD*.

5. Sample answer:

You are given a quadrilateral with one pair of congruent opposite sides and one pair of

congruent opposite angles. This can be shown in the diagram above. $\overline{AC} \cong \overline{DB}$ and $\overline{CA} \cong \overline{CD}$ by the given infomation and $\overline{CB} \cong \overline{CB}$ by the

Reflexive Property. Although you have two congruent sides and a pair of congruent angles, the congruent angle is not included. Because there is no more information given and you cannot obtain any more, it cannot be shown that

 $\triangle ABC \cong \triangle DCB$ because congruence theorems for this situation do not exist. You need

 $\triangle ABC \cong \triangle DCB$ to prove the quadrilateral is a parallelogram.

6. You would need to show that on angle is supplementary to both consecutive angles.

Answer Key

Sample answer:

Given: $\angle A$ is supplementary to

 $\angle B$ and $\angle D$.

Prove: *ABCD* is a parallelogram.

Statements	Reasons
1. $\angle A$ is supplementary	1. Given
to $\angle B$ and $\angle D$. 2. $\overline{BC} \parallel \overline{AD}$ and $\overline{BA} \parallel \overline{CD}$	2. Consecutive
	Interior Angles Converse
3. <i>ABCD</i> is a	3. Definition of a parallelogram.
	parallelogram