Guided Notes -- 8.2 Estimating a Population Proportion

- 1. Give 2 examples of a population proportion: p?

 (1) WHAT PROPORTION OF U.S. ADULTS ARE UNEMPLOYEO?
- 2) WHAT PROPORTION OF CELL PHONE USERS OWN AN IPHONE?
- 2. How do you calculate a *sampling proportion:* \hat{p} ?

- Describe the "sampling distribution of a sample proportion p" as learned in section 7.2. Use the correct variable notations.
 - Shape (and state conditions)

• Center (mean of the sampling distribution of \hat{p})

• Spread (standard deviation of the sampling distribution of \hat{p})

o What condition is required to calculate the standard deviation?

General form to calculate a confidence interval is on the **Green Sheet**:

statistic ± (critical value) • (standard deviation of the statistic)

4. What <u>statistic</u> will be used to calculate the cofidence interval for proportions?

Statistic is p

5. How does the standard deviation differ to to standard error for the sampling distribution of \hat{p} ?

Formula for standard deviation of sampling distribution of \hat{p} :

Formula for standard error of the sample proper tion \hat{p} : $SE(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})}$ SE(\hat{p})

a) Define standard error of a statistic

WHEN THE STANDARD DEVIATION OF A STATISTIC (ic))
IS ESTIMATED FROM DATA, THE RESULT IS CALLED
THE STANDARD ERROR OF THE STATISTIC EXAMPLE SE(F)

- b) (in context) The STANDARD ERROR SE(\$) describes how close the Sample Proportion (\$\hat{p}\$) will be, on average, to the population proportion (\$p\$) in repeated SRSs of size \$\hat{p}\$.
- 6. How do you get the <u>critical value</u> (z*)? <u>Hint</u>: follow steps outlined on pages 487-488. Use the graphing calculator. Do <u>not</u> use Table A.
 - a) What is the value of z^* for a 95% confidence interval? Include a sketch (see figure 8.8).

b) What is the value of z^* for a 90% confidence interval? Include a sketch (see figure 8.8).

NOW OS 1.645 CL Z*= +1.645

INV NORM (.05,0,1)

c) What is the value of z^* for a 99% confidence interval? Include a sketch (see figure 8.8).

7. What is the formula for a *one-sample z interval for a population proportion*?

a) Describe z*

Z* is the critical value for the standard Normal Curve " with the area ((CL) between -Z* and Z*.

8. The 4 step process (simplified) to contruct and interpret a confidence interval.

Follow these required steps:	Example "Teens Say Sex Can Wait" Complete these steps to construct the 95% CI for p.		
Define population parameter	p=actual proportion of all 13-17 in U.S who say they will weit forses		
2) State the inference method	1-Sample Z-Interval for a proportion		
3) Check conditions	Random SRS of 439 teens		
A= 246 = .56 SEP= 10237	Normal $n\hat{\rho} = 439(.56) = 2467,10 $ $n(1-\hat{\rho}) = 439(.44) = 1937,10 $ Independent sampling without replacement. It is reasonable 10 (439) = 4,390 teens in the U.S.		
4) Sketch graph	952 CL > Z*=±1.96		
5) Show calculations with numbers	.56 ± 1.96 \(\frac{(.56)(.44)}{459}		
	.56±.046 [.514,.606]		
6) Answer in contex	We are 95% Confident that the		
	true proportion who say they will wait for sex is between		

9. What formula is used to determine the sample size necessary for a given margin of error?

$$Z^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq mE$$
 Where, $\hat{p}=.5$ if not given

10. Refer to thr <u>Example</u> "Customer Satisfaction," to complete the table below. Clearly show the steps to determine the sample sizes.

	a) Use the \hat{p} to produce the largest sample size in this example.	b) Now, find the sample size if you are told use $\hat{p} = .31$	
	$\hat{p} =5$ 95% CL $\longrightarrow Z^{x} = +1.96$ ME = 3% = .03	$\hat{p} = .31$ $ME = .03$	CL=95% z*= 1.96
Vn	$\left(1.96\sqrt{\frac{(.5)(.5)}{n}}\right) \leq \left(.03\right).\sqrt{n}$,)(.69))4(03).1
	1.96 (.5) < .03 \n .03	103	$\frac{5}{3} \leq \frac{103 \ln n}{103}$ $22)^{2} \leq (n)^{2}$
	$(32.667)^{2} \leq (n)^{2}$		>, 913.02
	Must Sample 1,068 ormore		more 914

11. What is the rounding rule for determining sample sizes?

ALLUAYS ROUND UP TO EN SURE THE ME IS SATIFIED FOR THE SPECIFIED CONFIDENCE LEVEL