Lesson 8.2

Challenge Practice

1. (-1, 5), (7, 5)**2.** (2, 1), (2, 3)**3.** (a + 2, b + 3), (a + 6, b + 3)**4.** $(a^2, b^2), (a + a^2, b^2)$ **5.** 2

6. All four vertices of a parallelogram can only have at most two equal *x*-values and two equal *y*-values. So the third and fourth vertices of the parallelogram cannot have the same *x*-values or *y*-values as the other vertices if there are already two equal *x*-values or two equal *y*-values.

7. *Sample answer:* Draw the diagonal of one vertex to the opposite vertex to create two congruent triangles. This can be done in two ways.

8. *Sample answer:* Draw a diagonal connecting two opposite vertices and then draw another diagonal connecting the other two opposite vertices.

9. *Sample answer:* First Way: Connect one vertex to the midpoint of the opposite side. Repeat for the opposite vertex. Next draw the diagonal connecting the remaining opposite vertices. Second Way: Repeat the first method but connect the other opposite vertices with a diagonal.

10. No.

11. Sample answer:

Statements	Reasons
1. <i>RSTU</i> and <i>WXYZ</i> are	1. Given
parallelograms.	
2. $\overline{RS} \parallel \overline{UT}, \overline{RU} \parallel \overline{ST},$	2. Definition of a
$\overline{WX} \ \overline{ZY}$, and	parallelogram
$WZ \parallel XY$	
3. $\angle RWX \cong \angle YXW$	3. Alternate Interior Angles Theorem
4. $\angle YXW \cong \angle WZY$	4. Opposite angles of a parallelogram are congruent.
5. $\angle WZY \cong \angle TYZ$	5. Alternate Interior Angles Theorem
6. $\angle RWX \cong \angle TYZ$	6. Substitution Prop. of Equality
7. $\angle XRW \cong \angle UZR$	7. Alternate Interior Angles Theorem
8. $\angle SXT \cong \angle YTZ$	8. Alternate Interior Angles Theorem
9. $\angle XRW \cong \angle SXT$	9. Corresponding Angles Postulate
10. $\angle XRW \cong \angle YTZ$	10. Substitution Prop. of Equality
11. $\triangle RWX \sim \triangle TYZ$	11. Angle-Angle Similarity Post.
12. w A	

Given: *WXYZ* is a parallelogram and \overline{WY} and \overline{XZ} are diagonals of *WXYZ*.

Prove: D is the midpoint of the segment with endpoints on opposite sides passing through the point of intersection D.

Answer Key

Statements	Reasons
1. <i>WXYZ</i> is a	1. Given
parallelogram,	
$\overline{WX} \parallel \overline{YZ}$, and	
$\overline{WZ} \parallel \overline{XY}.$	
2. $\overline{DW} \cong \overline{DY}$ and	2. Theorem 8.10
$\overline{DX} \cong \overline{DZ}$	
3. $\overline{WX} \cong \overline{YZ}$, and	3. Theorem 8.7
$\overline{WZ} \cong \overline{YX}$	
4. $\triangle WDX \cong \triangle YDZ$,	4. SSS Cong. Post.
$\triangle WDZ \cong \triangle YDZ$	6
5. Altitude of $\triangle WDX =$	5. If two triangles
alt. of $\triangle YDZ$, and alt.	are congruent,
of $\triangle WDZ = alt. of$	their altitudes
$\triangle YDZ.$	are equal.
6. Let \overline{AB} pass through	6. Assume
D and have its	
endpoints on	
\overline{WX} and \overline{YZ} .	
7. The angle formed by	7. Vertical Angles
\overline{AD} and the altitude	Cong. Theorem
of $\triangle WDX \cong$ the	
angle formed by \overline{BD}	
and the alt. of $\triangle YDZ$.	
8. $\angle 1$ and $\angle 2$ are	8. Definition of an
right angles.	altitude
9. ∠1 ≅ ∠2	9. Right Angle
	Congruence Thm.
10. The triangles formed	10. ASA Congruence
by the altitudes and	Postulate
\overline{AD} and \overline{BD} are cong.	
11. $\overline{AD} \cong \overline{BD}$	11. Corresponding parts of cong.
	triangles are
	congruent.
12. <i>D</i> is the midpoint	12. Def. of a
of \overline{AB} .	midpoint
13. Sample answer:	

Given: ABCD is a quadrilateral and E, F, G, and H are midpoints of their respective segments.Prove: When the midpoints of adjacent sides are connected by segments, a parallelogram is formed.Step 1: Place ABCD and assign coordinates. Let E, F, G, and H be midpoints of their respective segments. Find the coordinates of the midpoints.

Answer Key

Step 2: Connect the midpoints of adjacent sides with segments.

Step 3: Prove $\overline{EH} \parallel \overline{FG}$ and $\overline{EF} \parallel \overline{HG}$ by showing their slopes are congruent.

$$m\overline{EH} = \frac{0 - \frac{3k}{2}}{\frac{3h}{2} - \frac{h}{2}} = \frac{-\frac{3k}{2}}{h} = -\frac{3k}{2h}$$
$$m\overline{FG} = \frac{\frac{5k}{2} - \frac{8k}{2}}{\frac{7h}{2} - \frac{5h}{2}} = \frac{-\frac{3k}{2}}{h} = -\frac{3k}{2h}$$
$$m\overline{EF} = \frac{\frac{8k}{2} - \frac{3k}{2}}{\frac{5h}{2} - \frac{h}{2}} = \frac{\frac{5k}{2}}{2h} = \frac{5k}{4h};$$
$$m\overline{HG} = \frac{\frac{5k}{2} - 0}{\frac{7h}{2} - \frac{3h}{2}} = \frac{\frac{5k}{2}}{2h} = \frac{5k}{4h}$$

Because the slopes are the same, $\overline{EH} \| \overline{FG}$ and $\overline{EF} \| \overline{HG}$.

Step 4: Prove *EFGH* is a parallelogram. Because both pairs of opposite sides are parallel, *EFGH* is a parallelogram. Because *EFGH* is a parallelogram and *E*, *F*, *G*, and *H* are midpoints of the respective sides of *A*, *B*, *C*, and *D*, a parallelogram is formed when the midpoints of adjacent sides are connected by segments.