PART A:

Torque and Rotation	7.E Rotation	
NAME		DATE
Scenario A meterstick is set on the edge but a negligible bit of its length table as shown. The meterstick horizontally. The meterstick's n length is n . The rotational ineraround the end is n is n	n is off the edge of the c is released from rest mass is M and its	Ocm.
horizontal, but there is no long	meterstick just after it ger anyone supporting t m a free-body diagram	has been released—meaning that it is still the right end of the meterstick. (Remember in that the forces are drawn at the point of

PART B: Identify the point on the meterstick around which the meterstick is pivoting. Mark this point with an X.

Is there more than one choice for the pivot point? What are the implications?							

Use an Equation

PART C: Determine the net torque about the meterstick's left end, instantaneously after being released.

PART E: Derive an expression for the linear acceleration of the far end of the meterstick (not on the table) in terms of *g*. What is the consequence of your answer? Explain in terms of what would happen to a penny placed on the end of the rod before it was released.

PART D: Starting with Newton's second law in rotational form, derive an expression for the initial angular