INTRODUCTION:

Genes are the units that determine inherited characteristics, such as hair color and blood type. Genes are ★ segments of DNA that code for proteins. The sequence of bases in DNA is the code that determines the sequence of amino acids, and thus the structure and function of proteins.

Protein synthesis starts in the nucleus. Here, the cell constructs a strand of mRNA from the DNA code of a particular gene. The mRNA message leaves the nucleus and goes to the ribosome, which will read the message to construct a particular sequence of amino acids.

The mRNA message is read by the ribosome one **codon** (group of 3) at a time. Each codon codes for one of the 20 **amino acids**. Amino acids are joined by **peptide bonds**, and the process is complete when a *chain of amino acids* is released by the ribosome. The release happens when the ribosome reads a codon that signals a **STOP**.

Proteins gain their functional shapes by *bending*, *folding*, and *twisting* in a particular manner. The pattern of bending and folding depends on the chemical properties of each amino acid. It is the sequence of amino acids that determines how the protein will fold. Folding into the correct **shape** is essential for the **job** of the protein. Proteins are sensitive to changes in **pH** and **temperature**, which can disrupt the weak bonds that hold the protein into its shape, causing it to **denature** (unfold, untwist, and lose its shape) and become a *nonfunctional* amino acid chain.

1. What does each gene in your DNA code for?

- 2. Where does protein synthesis begin, and what takes place?
- 3. Where are proteins constructed in the cell?
- 4. What is a codon, and what does each codon code for?
- 5. What type of bond joins amino acids together?
- 6. When does the ribosome complete the chain of amino acids?
- 7. How do amino acid chains become functional proteins?
- 8. What would happen if there was a mistake in the amino acid sequence?...
- 9. What are some factors that can cause a protein to denature?

BUILD-A-SAM:

In this activity, you will simulate the mechanism of protein synthesis and thereby determine the traits inherited by a fictitious organism called **SAM**. SAM cells contain only one chromosome. This chromosome is made up of 8 genes (gene A, B, C, D, E, F, G, H and I). Each gene codes for a particular protein and thereby trait.

PROBLEM: * How can traits on a particular chromosome be determined?

* How can these traits determine the characteristics of an organism

PROCEDURE:

Gene A has been completed as an example. Notice the sequence of bases in the DNA. On the line provided *above*, write the *complementary sequence* of **DNA** bases (**REPLICATION**). On the line provided *below*, write the sequence of bases of **mRNA** that would be made for protein synthesis. Then, on the next line, write the sequence of **amino acids** that are coded for by the **mRNA** codons. Use the *amino* acid sequence chart to determine the **trait** of your SAM. Draw a picture of your SAM using the traits coded for by its DNA. "Make" 2 additional genes that code for a trait of your choice to make your SAM unique.

BUILD-A-SAM		
Gene A- EXAMPLE	<u>Gene B</u>	Gene C AAA TT C
DNA TGG - CCA - ATA	DNA <u>TCG</u> - <u>GCT</u>	DNA MAR - 10
DNA ACC - GGT - TAT	DNA AGC - CGA	DNA TTT - AAC
(codons)	↓ ↓	
mRNA UGG CCA - AUA	mRNA U <u>(G</u> GCU	mRNA AAA UUG
Amino Acid Ψ Ψ ψ	Amino Acid	Amino Acid
Sequence <u>TRP</u> - <u>PRO</u> - <u>MET</u>	Sequence <u>Sev</u> OV VC	Sequence (4)
Trait: HAIRLESS	Trait PUMP	Trait 4 legs
Gene D	<u>Gene E</u>	Gene F
DNA CCT - GCG - AGT	DNA <u>CLL</u> - <u>TCL</u> - <u>TT1</u> - <u>AGL</u>	DNA TAC-TAC-AGT
DNA GGA CGC - TCA	DNA GGG - AGG AAA - TCG	DNA ATG ATG - TCA
mRNA C <u>(M</u> <u>G(G MGN</u>	mRNA <u>CLL ULL UUU AGC</u>	mRNA <u>UAC</u> <u>UAC</u> <u>AGU</u>
Amino Acid by 0 all call	Amino Acid	Amino Acid
Sequence <u>Conce</u> <u>Sec</u>	Sequencepro <u>Str</u> phe <u>Str</u>	Sequence tur Tr Scr
Trait ONE tooth	Trait SMALLEAVS	Trait (the face

0	de -					
	Amino Acid	Trait				
_	Sequence					
	TRP-PRO-MET	Hairless				
	TRP-PRO-VAL	Hairy				
	SER-ALA	Plump				
	SER-VAL	Skinny				
	LYS-LEU	Four-legged				
	LYS-VAL	Two-legged				
	PRO-ALA-ALA	Two teeth				
	PRO-ALA-SER	One tooth				
	PRO-SER-PHE-GLY	Big ears				
	PRO-SER-PHE-SER	Small ears				
	TYR-TYR-ASP	Grumpy face				
	TYR-TYR-SER	Cute face				

Universal Genetic Code Chart Messenger RNA Codons and the Amino Acids for Which They Code

		SECON	DBASE		
	U	C	<u>A</u>	G	
υ	$\left. \begin{matrix} UUU\\ UUC \end{matrix} \right\} \ \textbf{PHE} \\ \left. \begin{matrix} UUA\\ UUG \end{matrix} \right\} \ \textbf{LEU}$	UCU UCC UCA UCG	$\left. \begin{matrix} UAU\\ UAC\\ UAA\\ UAG \end{matrix} \right\} STOP$	UGU UGC UGA } STOP UGG } TRP	U C A G
c	CUU CUC CUA CUG	CCU CCC CCA CCG	$\left. \begin{matrix} CAU \\ CAC \end{matrix} \right\} \ \textbf{HIS} \\ \left. \begin{matrix} CAC \\ CAG \end{matrix} \right\} \ \textbf{GLN}$	CGU CGC CGA CGG	U C A G
A	AUU AUC AUA AUG } MET or AUG } START	ACU ACC ACA ACG	$\left. \begin{smallmatrix} AAU \\ AAC \end{smallmatrix} \right\} \left. \begin{smallmatrix} ASN \\ AAC \\ AAG \end{smallmatrix} \right\} \left. \begin{smallmatrix} LYS \\ LYS \end{smallmatrix} \right.$	$\left. \begin{array}{c} AGU \\ AGC \end{array} \right\} \hspace{0.1cm} \textbf{SER} \\ \left. \begin{array}{c} AGA \\ AGG \end{array} \right\} \hspace{0.1cm} \textbf{ARG} \end{array} \right. \hspace{0.1cm}$	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	$\left. \begin{matrix} \text{GAU} \\ \text{GAC} \end{matrix} \right\} \textbf{ASP} \\ \left. \begin{matrix} \text{GAA} \\ \text{GAG} \end{matrix} \right\} \textbf{GLU}$	GGU GGC GGA GGG	U C A G

NAME of SAM:

Create *two additional traits* to make your SAM unique. Create a <u>DNA sequence of 9 bases</u> and transcribe this into mRNA codons. Include the resulting amino acid sequence. Then DRAW those 2 new traits on your SAM.

GENE H	GENEL
DNA GACTIA CCG	ATC AGG CGG
mRNA	mrna $\mathcal{U} \mathcal{A} \mathcal{C}$
Amino Acid	Amino Acid
Sequence:	Sequence:
Trait: Freckles	Green color