GRADE LEVEL: 7/8 SUBJECT: Introduction to Engineering DATE: 2/2/17 2016-2017

GRADING PERIOD: 1 and 3 MASTER COPY: 3/24/17

CONTENT	STANDARD INDICATORS	SKILLS	ASSESSMENT	VOCAB	PRIORITY
GENERAL ENGINEERING AND TECHNOLOGY CONCEPTS					
PurposeEngineeringTechnologySociety	ETE-1.1: Illustrate the purpose of engineering and technology in society.	 Explain contributions of engineering and technology to society. State examples of how engineering has improved the quality of your life. Defend these factors as "improvements". 	"What do engineers do?" worksheet	NeedWant	Important
 Engineering & Technology Individuals Society Environment 	engineering and technology impacts individuals, society, and the environment.	 Explain historical and current impacts of engineering and technology. Identify and defend positive and negative impacts of an invention. Identify and explain possible ethical issues of engineering development area. 	 "What do engineers do?" worksheet Technological artifact research and presentation 	EngineerTechnologistControversial	Important

 Interdisciplinary Nature -Engineering -Technology 	ETE-2.1: Analyze the interdisciplinary nature of engineering and technology.	 Explain connections of engineering and technology to other disciplines. Show how engineering progress has depended on advances in science and mathematics. 	 Technological artifact research and presentation "Introduction to Engineering" notes and worksheet 	Disciplines	Important
 Knowledge & Skills Science Math Language Arts Fine Arts Social Studies Engineering Technology 	ETE-2.2: Apply knowledge and skills learned in science, mathematics, language arts, fine arts, and social studies classes when completing engineering and technology-based assignments.	 Use proper bibliography, layout, and meet standards of punctuation and grammar. Analyze satisfaction of design requirements using statistical analysis. Summarize the cultural effect of an engineering invention or innovation. 	 Technological artifact research and presentation Puzzle block solving analysis 	MeanStandard deviation	Important
 Eras History Technological Innovations & Practices 	ETE-3.1: Analyze how the eras in history are based on technological innovations and practices of the period.	 Explain historical eras and advances as they relate to chosen technological artifact. Classify an era based on technology available at that time. Name advances in science that needed to occur prior to a particular invention. 	Technological Artifact research and presentation	 Stone age Bronze age Iron age Machine age Oil age Atomic age Space age Information age Big Data age 	Important

 Inventions & Innovations Products Processes Materials Tools 	ETE-3.2: Investigate inventions and innovations of products, processes, materials, and tools.	 Research and present information about the historical progress of a technological artifact. Explain why inventions and innovations were needed in other areas before your artifact could be invented or improved. 	Technological Artifact presentation	InventionInnovation	Important
 Technology Inventions Innovations Positive & Negative Impacts Society Environment ENGINEERING DESIGN AND DEVELOPMENT 	ETE-3.3: Compare technology inventions and innovations and the positive/negative impacts on society and the environment.	State and defend positive and two negative impacts of multiple technological artifacts.	 Technological Artifact presentation Artifact presentation summary sheet 	• Society	Important
Design Process	ETE-4.1: Apply the steps of the design process.	State the steps of the engineering design process.	Foot orthosis design reflection table	 Cerebral Palsy Orthosis Design process steps 	Critical

 Design Process Product Real World 	ETE-4.2: Use the design process to create a product that addresses a real world problem.	 Produce a solution to an open-ended design problem prior to being introduced to the engineering design process. Solve real-world problems prior to being introduced to the engineering design process. Build a prototype of a design solution given limited materials. 	 Foot orthosis build and presentation Design process reflection table 	• Generate	Critical
Technical SketchDesignAnnotation	ETE-4.3: Create a technical sketch of a design with appropriate annotation.	 Create a front/right side/ top view drawing to match with orthnographic view. Dimension a drawing according to engineering best practices. Create an orthnographic drawing. Create a thumbnail sketch. 	 "A picture is worth a thousand words" multi-view sketching exercise. Foam puzzle blocks dimensioned drawings. 	OrthnographicMulti-viewThumbnail	Critical
 Product Design Process Documentation 	ETE-4.4: Develop a product using the design process, while maintaining appropriate documentation.	Invent a product by following all steps of the design process.	 Foot orthosis build and presentation. Design process reflection table. 	Documentation	Critical
Processing and Using Technology					
 Construction Systems Residential Industrial Commercial Civil 	ETE-7.1: Investigate various types of construction systems including residential, industrial, commercial, and civil.	Summarize residential, industrial, commercial, and civil construction systems.	Presentation and discussion.	ResidentialIndustrialCommercialCivil	Additional

 Construction Systems Utilization Designs Techniques Tools Processes 	ETE-7.2: Utilize appropriate designs, techniques, tools, and processes for construction systems.	Design and plan how to build a residential, industrial, commercial, or civil project.	Powerpoint presentation	• Process	Additional
• Constructions Systems Models	ETE-7.3: Construct simulations, models, and/or structures for specific construction systems.	Build a model of a construction system.	Construction system model	• Structure	Additional
 Biotechnology Types Agricultural Genetic Medical Imaging 	ETE-9.1: Investigate various types of biotechnologies including agricultural, genetics, medical, and imaging technologies.	Outline various types of biotechnologies.	Powerpoint presentation	BiotechnologyGeneticsImaging	Additional
EngineeringMedicalGenetic	ETE-9.2: Examine appropriate designs, technologies, tools, and processes for medical or genetic engineering.	 Explain which tools, designs, and technologies are appropriate in various medical and genetic engineering situations. 	Powerpoint presentation	Medical engineeringGenetic engineering	Additional
Biotechnology Models	ETE-9.3: Construct simulations, models, and/or prototypes for specific biotechnology disciplines.	Create a biotechnology model.	Model and presentation	Gene splicing	Additional

GRADE LEVEL: 7/8 SUBJECT: Introduction to Engineering DATE: 2/23/17 2016-2017

GRADING PERIOD: 2 and 4 MASTER COPY: 3/24/17

CONTENT	STANDARD INDICATORS	SKILLS	ASSESSMENT	VOCAB	PRIORITY
GENERAL ENGINEERING AND TECHNOLOGY CONCEPTS					
Safety and ProceduresToolsEquipment	ETE-1.4: Demonstrate safe practices and procedures with tools and equipment.	 Wear safety glasses when appropriate. Demonstrate safe procedures when using tools and other equipment. 	 Teacher observation Air drag racer build Drill Press/Scroll Saw Safety Procedures Assessment? 	Drill pressScroll sawAmputation	Important
ENGINEERING DESIGN AND DEVELOPMENT					
• Design Process	ETE-4.1: Apply the steps of the design process.	Produce engineering designs by using a formal design process.	 Wind turbine design project. Air drag racer design project. Cerebral Palsy toy design and presentation Rube Goldberg design project 	 Cerebral Palsy Orthosis Aerodynamic Turbine Design process steps 	Critical

Design ProcessProductReal World	ETE-4.2: Use the design process to create a product that addresses a real world problem.	 Produce a solution to an open-ended design problem by utilizing all steps of the formal design process Solve real-world problems by using the engineering design process. Build a prototype of a design solution given limited materials. 	Cerebral Palsy toy design project	• Concept • Prototype	Critical
 Design Process Product Documentation 	the design process, while maintaining appropriate documentation.	 Invent a product by following all steps of the design process. Demonstrate that the design process is iterative through design documentation. Document design progress and changes in engineering notebook. 	 Engineering notebook. Cerebral Palsy toy design project. 	• Iterative	Critical

 Drawings Models Graphical Physical Mathematical Prototypes Solutions 	ETE-4.5: Develop various types of models (graphical, physical, or mathematical) that help communicate solutions to peers.	Communicate design solutions to peers through various means, including: graphical, physical, mathematical.	 3D drawings of puzzle cube Graphs and statistics of puzzle solving times using Geogebra 2D drawings of foam block 2D drawings of puzzle cube 3D drawings of cerebral palsy toy design 	 Autodesk 3D drawing terminology Standard deviation 	Critical
Energy and Power Technologies					
• Power System Types	ETE-10.1: Analyze a variety of power and energy technology systems.	Compare various power and energy systems	Presentation and Discussion	SolarNuclearFossil FuelsFuel Cell	Additional
• Power System Solution	ETE-10.2: Solve a simple power and energy challenge and create an efficient solution.	 Design, evaluate, and improve a model wind turbine. 	Wind turbine project	TurbineRotorStator	Important
Power System Design Techniques Tools Processes	ETE-10.3: Utilize appropriate designs, techniques, tools, and processes for energy and/or power systems.	Explain the process used in developing a power system solution.	Wind turbine project presentation	Drill pressScroll sawAmputation	Important

Power system model	ETE-10.4: Design and construct simulations, models, and/or prototypes for specific power systems.	 Wear safety glasses when appropriate. Demonstrate safe procedures when using tools and other equipment. 	Wind turbine project	Drill pressScroll sawAmputation	Important
• Communication System Parts	ETE-11.1: Evaluate the parts of a communication system.	Explain parts of the communication system.	Class discussion	Communication	Additional
CommunicationSystem TypesAnalogDigital	ETE-11.2: Investigate various types of communication technologies including analog and digital technologies.	Explain various types of communication technologies.	Class discussion	AnalogDigital	Additional
• Communication Systems Models	ETE-11.3: Design and construct simulations/models/prototypes for specific communication systems.	Create a model of a communication system.	Communication poster project	Network	Additional
• Information Technology	ETE-11.4: Analyze how information technology impacts modes of communication.	Explain the impact of information technology on communication.	Class discussion	Information Technology	Additional

Engineering and Technology Careers					
CareerOpportunitiesEngineeringTechnology	ETE-12.1: Investigate careers in engineering and technology pathways.	 Investigate engineering and related career opportunities. 	 Engineering career research presentation 	• Pathway	Additional
Career Requirements - Education - Skills	ETE-12.2: Analyze education and skill requirements for engineering and technology professions.	 Explain skill requirements for engineering and related career opportunities. 	Engineering career research presentation	 Accredited Bachelor's degree Master's degree 	Additional
Career OutlookDemandWages	ETE-12.3: Report the outlook, demand, and projected wages for engineering and technology careers.	 Estimate the projected demand and wage potential for engineering and related career opportunities. 	Engineering career research presentation	Outlook	Additional