GRADE LEVEL: 7/8 SUBJECT: Introduction to Engineering DATE: 2/2/17 2016-2017 GRADING PERIOD: 1 and 3 MASTER COPY: 3/24/17 | CONTENT | STANDARD INDICATORS | SKILLS | ASSESSMENT | VOCAB | PRIORITY | |---|---|--|---|---|-----------| | GENERAL ENGINEERING
AND TECHNOLOGY
CONCEPTS | | | | | | | PurposeEngineeringTechnologySociety | ETE-1.1: Illustrate the purpose of engineering and technology in society. | Explain contributions of engineering and technology to society. State examples of how engineering has improved the quality of your life. Defend these factors as "improvements". | "What do
engineers do?"
worksheet | NeedWant | Important | | Engineering & Technology Individuals Society Environment | engineering and technology impacts individuals, society, and the environment. | Explain historical and current impacts of engineering and technology. Identify and defend positive and negative impacts of an invention. Identify and explain possible ethical issues of engineering development area. | "What do engineers do?" worksheet Technological artifact research and presentation | EngineerTechnologistControversial | Important | | Interdisciplinary Nature -Engineering -Technology | ETE-2.1: Analyze the interdisciplinary nature of engineering and technology. | Explain connections of
engineering and technology
to other disciplines. Show how engineering
progress has depended on
advances in science and
mathematics. | Technological
artifact research and
presentation "Introduction to
Engineering" notes
and worksheet | Disciplines | Important | |--|---|--|---|---|-----------| | Knowledge & Skills Science Math Language Arts Fine Arts Social Studies Engineering Technology | ETE-2.2: Apply knowledge and skills learned in science, mathematics, language arts, fine arts, and social studies classes when completing engineering and technology-based assignments. | Use proper bibliography,
layout, and meet standards
of punctuation and grammar. Analyze satisfaction of design
requirements using statistical
analysis. Summarize the cultural effect
of an engineering invention
or innovation. | Technological
artifact research and
presentation Puzzle block solving
analysis | MeanStandard
deviation | Important | | Eras History Technological
Innovations &
Practices | ETE-3.1: Analyze how the eras in history are based on technological innovations and practices of the period. | Explain historical eras and advances as they relate to chosen technological artifact. Classify an era based on technology available at that time. Name advances in science that needed to occur prior to a particular invention. | Technological Artifact research and presentation | Stone age Bronze age Iron age Machine age Oil age Atomic age Space age Information age Big Data age | Important | | Inventions & Innovations Products Processes Materials Tools | ETE-3.2: Investigate inventions and innovations of products, processes, materials, and tools. | Research and present information about the historical progress of a technological artifact. Explain why inventions and innovations were needed in other areas before your artifact could be invented or improved. | Technological Artifact presentation | InventionInnovation | Important | |---|--|--|--|--|-----------| | Technology Inventions Innovations Positive & Negative Impacts Society Environment ENGINEERING DESIGN AND DEVELOPMENT | ETE-3.3: Compare technology inventions and innovations and the positive/negative impacts on society and the environment. | State and defend positive and
two negative impacts of
multiple technological
artifacts. | Technological
Artifact presentation Artifact presentation
summary sheet | • Society | Important | | Design Process | ETE-4.1: Apply the steps of the design process. | State the steps of the engineering design process. | Foot orthosis design
reflection table | Cerebral Palsy Orthosis Design
process steps | Critical | | Design Process Product Real World | ETE-4.2: Use the design process to create a product that addresses a real world problem. | Produce a solution to an open-ended design problem prior to being introduced to the engineering design process. Solve real-world problems prior to being introduced to the engineering design process. Build a prototype of a design solution given limited materials. | Foot orthosis build
and presentation Design process
reflection table | • Generate | Critical | |--|--|--|--|---|------------| | Technical SketchDesignAnnotation | ETE-4.3: Create a technical sketch of a design with appropriate annotation. | Create a front/right side/ top view drawing to match with orthnographic view. Dimension a drawing according to engineering best practices. Create an orthnographic drawing. Create a thumbnail sketch. | "A picture is worth a thousand words" multi-view sketching exercise. Foam puzzle blocks dimensioned drawings. | OrthnographicMulti-viewThumbnail | Critical | | Product Design Process Documentation | ETE-4.4: Develop a product using the design process, while maintaining appropriate documentation. | Invent a product by following all steps of the design process. | Foot orthosis build
and presentation. Design process
reflection table. | Documentation | Critical | | Processing and Using Technology | | | | | | | Construction Systems Residential Industrial Commercial Civil | ETE-7.1: Investigate various types of construction systems including residential, industrial, commercial, and civil. | Summarize residential,
industrial, commercial, and
civil construction systems. | Presentation and discussion. | ResidentialIndustrialCommercialCivil | Additional | | Construction Systems Utilization Designs Techniques Tools Processes | ETE-7.2: Utilize appropriate designs, techniques, tools, and processes for construction systems. | Design and plan how to build
a residential, industrial,
commercial, or civil project. | Powerpoint presentation | • Process | Additional | |--|---|---|---------------------------|---|------------| | • Constructions Systems
Models | ETE-7.3: Construct simulations, models, and/or structures for specific construction systems. | Build a model of a construction system. | Construction system model | • Structure | Additional | | Biotechnology Types Agricultural Genetic Medical Imaging | ETE-9.1: Investigate various types of biotechnologies including agricultural, genetics, medical, and imaging technologies. | Outline various types of biotechnologies. | Powerpoint presentation | BiotechnologyGeneticsImaging | Additional | | EngineeringMedicalGenetic | ETE-9.2: Examine appropriate designs, technologies, tools, and processes for medical or genetic engineering. | Explain which tools, designs,
and technologies are
appropriate in various
medical and genetic
engineering situations. | Powerpoint presentation | Medical engineeringGenetic engineering | Additional | | Biotechnology Models | ETE-9.3: Construct simulations, models, and/or prototypes for specific biotechnology disciplines. | Create a biotechnology model. | Model and presentation | Gene splicing | Additional | GRADE LEVEL: 7/8 SUBJECT: Introduction to Engineering DATE: 2/23/17 2016-2017 GRADING PERIOD: 2 and 4 MASTER COPY: 3/24/17 | CONTENT | STANDARD INDICATORS | SKILLS | ASSESSMENT | VOCAB | PRIORITY | |---|--|--|--|--|-----------| | GENERAL ENGINEERING AND TECHNOLOGY CONCEPTS | | | | | | | Safety and
ProceduresToolsEquipment | ETE-1.4: Demonstrate safe practices and procedures with tools and equipment. | Wear safety glasses when appropriate. Demonstrate safe procedures when using tools and other equipment. | Teacher observation Air drag racer build Drill Press/Scroll Saw
Safety Procedures
Assessment? | Drill pressScroll sawAmputation | Important | | ENGINEERING
DESIGN AND
DEVELOPMENT | | | | | | | • Design Process | ETE-4.1: Apply the steps of the design process. | Produce engineering
designs by using a formal
design process. | Wind turbine design project. Air drag racer design project. Cerebral Palsy toy design and presentation Rube Goldberg design project | Cerebral Palsy Orthosis Aerodynamic Turbine Design process
steps | Critical | | Design ProcessProductReal World | ETE-4.2: Use the design process to create a product that addresses a real world problem. | Produce a solution to an open-ended design problem by utilizing all steps of the formal design process Solve real-world problems by using the engineering design process. Build a prototype of a design solution given limited materials. | Cerebral Palsy toy design project | • Concept • Prototype | Critical | |--|--|---|---|-----------------------|----------| | Design Process Product Documentation | the design process, while maintaining appropriate documentation. | Invent a product by following all steps of the design process. Demonstrate that the design process is iterative through design documentation. Document design progress and changes in engineering notebook. | Engineering notebook. Cerebral Palsy toy design project. | • Iterative | Critical | | Drawings Models Graphical Physical Mathematical Prototypes Solutions | ETE-4.5: Develop various types of models (graphical, physical, or mathematical) that help communicate solutions to peers. | Communicate design
solutions to peers through
various means, including:
graphical, physical,
mathematical. | 3D drawings of puzzle cube Graphs and statistics of puzzle solving times using Geogebra 2D drawings of foam block 2D drawings of puzzle cube 3D drawings of cerebral palsy toy design | Autodesk 3D drawing terminology Standard deviation | Critical | |--|---|--|---|---|------------| | Energy and Power Technologies | | | | | | | • Power System Types | ETE-10.1: Analyze a variety of power and energy technology systems. | Compare various power
and energy systems | Presentation and Discussion | SolarNuclearFossil FuelsFuel Cell | Additional | | • Power System Solution | ETE-10.2: Solve a simple power and energy challenge and create an efficient solution. | Design, evaluate, and
improve a model wind
turbine. | Wind turbine project | TurbineRotorStator | Important | | Power System Design Techniques Tools Processes | ETE-10.3: Utilize appropriate designs, techniques, tools, and processes for energy and/or power systems. | Explain the process used in developing a power system solution. | Wind turbine project
presentation | Drill pressScroll sawAmputation | Important | | Power system
model | ETE-10.4: Design and construct simulations, models, and/or prototypes for specific power systems. | Wear safety glasses when appropriate. Demonstrate safe procedures when using tools and other equipment. | Wind turbine project | Drill pressScroll sawAmputation | Important | |---|---|--|------------------------------|---|------------| | • Communication
System Parts | ETE-11.1: Evaluate the parts of a communication system. | Explain parts of the communication system. | Class discussion | Communication | Additional | | CommunicationSystem TypesAnalogDigital | ETE-11.2: Investigate various types of communication technologies including analog and digital technologies. | Explain various types of communication technologies. | Class discussion | AnalogDigital | Additional | | • Communication
Systems
Models | ETE-11.3: Design and construct simulations/models/prototypes for specific communication systems. | Create a model of a communication system. | Communication poster project | Network | Additional | | • Information
Technology | ETE-11.4: Analyze how information technology impacts modes of communication. | Explain the impact of information technology on communication. | Class discussion | Information Technology | Additional | | Engineering and
Technology
Careers | | | | | | |---|---|--|--|--|------------| | CareerOpportunitiesEngineeringTechnology | ETE-12.1: Investigate careers in engineering and technology pathways. | Investigate engineering
and related career
opportunities. | Engineering career research presentation | • Pathway | Additional | | Career Requirements - Education - Skills | ETE-12.2: Analyze education and skill requirements for engineering and technology professions. | Explain skill requirements
for engineering and related
career opportunities. | Engineering career research presentation | Accredited Bachelor's
degree Master's
degree | Additional | | Career OutlookDemandWages | ETE-12.3: Report the outlook, demand, and projected wages for engineering and technology careers. | Estimate the projected
demand and wage
potential for engineering
and related career
opportunities. | Engineering career research presentation | Outlook | Additional |