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AP Physics – Thermodynamics Wrapup
Here are your basic equations for thermodynamics.  There’s a bunch of them.

0l l T 

This is the equation for the change in length of an object as a function of 

temperature.  The  is the coefficient of linear expansion, 0l  is the initial length of 
the object, l is the change in length from the expansion, and T  is the 
temperature difference.

Q mL

This equation allows you to figure out the heat required to bring about a phase 

change.  Good old latent heat. Q  is heat, m is the mass, and L  is the heat of 
transformation,  either for vaporization of fusion.

Q mc T 

Use this equation to figure out the heat required to change the temperature of 
a substance.  Good old sensible heat.

pV nRT

The good old ideal gas law.

3

2
avg BK k T

This equation will calculate the average kinetic energy of a gas particle for a given 

temperature.  Bk  is Boltzmann’s constant. 
231.38 10B

J
k x

K



3 3 B
rms

RT k T
v

M 
 

This equation calculates the average velocity (symbol rmsv ) which is actually 
referred to as the root-means-square velocity for a gas particle.  R  is the universal 

gas constant (
8.31

J
R

mol K


 ), M is the molecular mass (mass on one mole 
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of an element), and   is the mass of a molecule (this would be the mass of a single 
molecule), and the rest of the stuff you know.

W p V

This is the work done by a system that expands at a constant pressure – your basic 
piston/cylinder heat engine deal.

Q nc T 

This is the amount of heat needed to increase the temperature of n moles of a 
substance.  c is the molar specific heat.

U Q W  

This is the first law of thermodynamics.  The change in the internal energy of a 
system is equal to the heat added to the system plus the work done on the system.

VU nc T  

This gives you the change in internal energy for n moles of a gas.  Vc  is the molar 
heat capacity at constant volume.  Do you recognize it? Do you recognize the 
equation?  Well, the Physics Kahuna is not surprised.  This is because we did not talk
about or use this equation.  So don’t worry about it.  It is, however, included on the 
AP Physics Test Equation Sheet for some obscure reason the Physics Kahuna does 
not know.

H

W
e

Q


The general equation for the efficiency of a heat engine.  Use this to find the 
efficiency of an engine -  W is the work done by the engine and QH is the upper heat 
reservoir (which represents the heat added to the system).

H C
c

H

T T
e

T




This is the ideal efficiency for a heat engine.  This is the maximum possible value 
the engine can have.  The efficiency is a function of the upper and lower operating 
temperature.  It is important for you to realize that no real heat engine can actually 
achieve this efficiency.
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Here’s what you have to be doing with all this thermo stuff.

A. Temperature and Heat

1. You should understand the "mechanical equivalent of heat" so you can calculate how much 
a substance will be heated by the performance of a specified quantity of mechanical work.  

This just means that you should be able to convert from calories to Joules and Joules to calories. 
It also involves the use of the law of conservation of energy.  Mechanical work done on a 
thermodynamic system will increase its thermal energy &tc. 1 cal = 4.186 J

2. You should understand the concepts of specific heat, heat of fusion, and heat of vaporization
so you can:  

a. Identify, given a graph relating the quantity of heat added to a substance and its 
temperature, the melting point and boiling point and determine the heats of fusion and 
vaporization and the specific heat of each phase.

This requires you to interpret a standard temperature Vs energy graph.  Consult the earlier unit 
to see how to do that.  The basic idea here is to recognize the various sections of the graph and to 
know what sort of heating events they represent.

b. Determine how much heat must be added to a sample of a substance to raise its temperature 
from one specified value to another, or to cause it to melt or vaporize.

This requires you to use specific heat, the heat of fusion, or the heat of vaporization.  Very 
straight forward stuff.  It’s basically pie.  There are only two equations that you would have to

use, Q mL  (for phase changes)  and   Q mc T   (to increase or decrease the 
temperature of the system).

3. You should understand heat transfer and thermal expansion so you can:

a. Determine the final temperature achieved when substances, all at different temperatures, 
are mixed and allowed to come to thermal equilibrium. 

This is an application of the law of heat exchange – heat lost by one system is equal to the 
heat gained by the other system.  The final temperature is the same for both – the 
equilibrium temperature.  Several lovely problems were given you as part of your 
homework.

b. Analyze qualitatively what happens to the size and shape of a body when it is heated.

“Qualitatively” means that you just have to say if it gets bigger or smaller, but not 
precisely by what amount this would happen.  You basically use the kinetic theory of 
matter.  You could also use the equation for linear expansion, since objects expand in all 
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directions when heated.     0l al T   Basically a body will expand in all directions 
when heated.  It does this because the particles that make it up move with greater energy, 
taking up more space.

B. Kinetic Theory and Thermodynamics

1. Ideal Gases

a. You should understand the kinetic theory model of an ideal gas so you can:  

(1) State the assumptions of the model.  

Here they are:

 The number of particles in a system is enormous and the separation between the particles 
is huge.

 All the particles move randomly.
 The particles have perfectly elastic collisions with each other and other atoms. 
 There are no forces of attraction between the particles of a gas.  
 All the particles are identical.

(2) State the connection between temperature and mean translational kinetic energy, and
apply it to determine mean speed of gas molecules as a function of their mass and 
the temperature of the gas.  

The mean translational kinetic energy of a particle is given by: 

3

2
avg BK k T

The mean speed of a gas molecule is given by: 

3 3 B
rms

RT k T
v

M 
 

You were fortunate enough to have a chance to do many of these problems as part of 
your beloved homework.  Previous units showed you how to do them.  Also, you will be
provided with the equations.

(3) State the relationship among Avogadro's number, Boltzmann’s constant, and the gas 
constant R, and express the energy of a mole of a monatomic ideal gas as a function 
of its temperature.

Boltzmann’s constant only shows up in two of our equations; 
3 3 B

rms

RT k T
v

M 
 

  and    

3

2
avg BK k T

If you look at the first one, you see: 
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3 3 3 3B BRT k T RT k T
square both sides

M M 
 

Get rid of the temperature and the 3: 

BR k

M 


    Solve for Bk  

M is the molecular mass which is: AM N

(the mass of a single molecule multiplied by Avogadro’s number)

B B
A A

RR R
k and we get k

M N N




  

So Boltzmann’s constant is simply the ideal gas constant divided by Avogadro’s 
number. Unfortunately, this equation will not be provided to you on the test.  You’ll 
just have to know it or be able to develop it.

(4) Explain qualitatively how the model explains the pressure of a gas in terms of 
collisions with the container walls, and explain how the model predicts that, for 
fixed volume, pressure must be proportional to temperature.

This is pie.  The Physics Kahuna has explained it all in the thermo handout.

b. You should know how to apply the ideal gas law; and   thermodynamics principles so 
you can:

(1) Relate the pressure and volume of a gas during an isothermal expansion or 
compression.  

This is pretty simple.  This is simply the old Boyle’s law from chemistry, you know, 
1 1 2 2PV PV   except you aren’t given that equation.  You have to derive it from the ideal 

gas law  PV nRT .  If the system change is isothermal, then the nRT  bit is a constant.
This means that PV equals a constant, therefore, no matter what happens to the pressure 

or the volume, PV is still the same value.  This means that  1 1 2 2PV PV .

It’s really pretty simple.  Using the equation is super easy – more pie.

(2) Relate the pressure and temperature of a gas during constant-volume heating or 
cooling, or the volume and temperature during constant- pressure heating or 
cooling.  

This is another application of the ideal gas law.  
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If the volume is constant and the pressure and temperature change, we can do this 
with the ideal gas law:

P nR
PV nRT

T V
 

This means that  

P

T  is equal to a constant and
nR

V  is a constant.  So   

1 2

1 2

P P

T T


.

Similarly, if the pressure stays constant, one can develop this equation just like we did
before.

1 2

1 2

V V

T T


(3) Calculate the work performed on or by a gas during an expansion or compression at
constant pressure.  

The work done by an expansion or compression is given by the equation:

W p V

Luckily this equation is one of the given ones. (Whew.)

(4) Understand the process of adiabatic expansion or compression of a gas.  

In an adiabatic processes no heat enters or leaves the system.  It is the Physics 
Kahuna’s belief that he did a darn good job of explaining the thing in the handout.  
Please consult it.  The main idea is that U W  .

(5) Identify or sketch on a PV diagram the curves that represent each of the above 
processes.

This is fairly simple stuff.  Consult the handout on how to do this.

 2. Laws of Thermodynamics

a. You should know how to apply the first law of thermodynamics so you can:

(1) Relate the heat absorbed by a gas, the work performed by the gas, and the internal 
energy change of the gas for any of the processes above. 

 
The heat absorbed by a gas can be determined by using the following equation: 
Q mc T  .  The work performed by a gas is given by the   W p V  equation, 
or else you can find it as the area under a P vs V curve.  The inernal energy change 

of the gas is given by the first law of thermodynamics; U Q W   .  
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(2) Relate the work performed by a gas in a cyclic process to the area enclosed by a 
curve on a PV diagram.

This is a favorite of the test writers.  The basic idea is that the area under the curve 
represents the work for a single step in the cycle.  The net work is the area enclosed by
the entire curve.  You got the chance to do several of these types of problems in the 
homework.  This is an application of the first law and the idea that the work  done is 
equal to PV and/or the area under the curve of a P vs V graph.

 b. You should understand the second law of thermodynamics, the concept of entropy, and 
heat engines and the Carnot cycle so you can:

(1) Determine whether entropy will increase, decrease, or remain the same during a 
particular situation. 

The second law says that it is impossible to build a heat engine that can produce 
work equivalent to the input heat.  It also says that heat will always flow from a hot 
system to a cold system and never the other way ‘round.  It tells us that some  of the 
heat put into a system must be returned back to the environment as heat – this 
implies that the efficiency of a system can never be 100%; it must always be less.

Entropy is a formalized measure of disorder. As disorder increases, entropy 
increases. The second law says that entropy tends to increase in all natural 
processes.

(2) Compute the maximum possible efficiency of a heat engine operating between two 
given temperatures.  

To find the maximum possible efficiency we use the ideal efficiency equation.  
Remember to convert the temperatures to Kelvins.
 

H C
c

H

T T
e

T




(3) Compute the actual efficiency of a heat engine.  

To find this, use the general efficiency equation for a heat engine. 

H

W
e

Q


(4) Relate the heats exchanged at each thermal reservoir in a Carnot cycle to the 
temperatures of the reservoirs.
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Well, what the heck does this mean?  Let’s try this.  The greater the difference in 
temperature between the two reservoirs, the greater will be the amount of heat that is 
exchanged.  So if more heat is exchanged, then the engine will be more efficient.  The 
greater the temperature of the high temperature reservoirr, the greater will be the 
amount of heat that is transferred.  Similarly, the lower the low temperature heat 
reservoir, the greater will be the amount of heat exchanged.

Once again there’s a lot of stuff here.

There are all sorts of thermo questions that can be asked.  A common thing on the test is to include a
thermo question with some other topic.  You might use electricity to heat up a resistor that is in 
water and the test will ask you for the temperature change of the water.  Also possible is a 
mechanical energy to thermal energy type thing.

AP Question Time: From 1999:

 A cylinder contains 2.0 moles of an ideal monatomic gas that is initially at state A with a 
volume of 1.0 x 10-2 m3 and a pressure of 4.0 x 105 Pa.  The gas is brought isobarically to state 
B, where the volume is 2.0 x 10-2 m3.  The gas is then brought at constant volume to state C, 
where its temperature is the same as at state A.  The gas is then brought isothermally back to 
state A.
a. Determine the pressure of the gas at state C.

We need an equation that relates P and V.  We start with the good old ideal gas law:

PV nRT   here the nRT part is a constant since the temperature is the same as when it started.  
So for changing conditions we get:

1 1 2 2 1 1 2 2PV nRT PV thus PV PV       
            

  
 

5 2 3

51 1
2 2 3

2

4.0 10 1.0 10
2.0 10

2.0 10

x Pa x mPV
P Pa

V x m




   

b.  On the axes below, state B is 
represented by the point B.  Sketch a 
graph of the complete cycle.  Label 
points A and C to represent states A 
and C, respectively.

c.  State whether the net work done by the 
gas during the complete cycle is positive, 
negative, or zero.  Justify your answer.



751

Positive.  The work done in the AB process is the area under the AB curve and is positive
since volume is increasing.  The work done in the BC process is zero – no change in 
volume takes place.  The work done in the CA process is the area under the curve, and it 
is negative since volume is decreasing.  Add them together and the net work must be 
positive, since the area under AB is greater than the area under CA.

a. State whether this device is a refrigerator of a heat engine.  Justify you answer.
It is a heat Engine.  The work done is positive.  Heat is absorbed at a higher temperature
and exhausted at a lower temperature.

From 2001:

 A cylinder is fitted with a freely moveable piston of area 1.20 x 10-2 m2 and negligible mass. 
The cylinder below the piston is filled with a gas. At state 1, the gas has volume 1.50 x 10-3 m3, 
pressure, 1.02 x 105 Pa, and the cylinder is in contact with a water bath at a temperature of 0C. 
The gas is then taken through the following four-step process.

 A 2.50 kg metal block is placed on top of the piston, compressing the gas to state 2, with the 
gas still at 0C.

 The cylinder is then brought in contact with a boiling water bath, raising the gas temperature
to 100C at state 3.

 The metal block is removed and the gas expands to state 4 still at 100C.
 Finally, the cylinder is again placed in contact with the water bath at 0C, returning the 

system to state 1.

(a) Determine the pressure of the gas in state 2.

The pressure at state 2 must be the initial pressure of the gas plus the pressure exerted by the 
weight of the metal block.
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2
5 2 5

2 2

2.5 9.8

1.02 10 20.4 10 1.02 10
1.20 10

i i

m
kg

F mg s
P P P x Pa x Pa x Pa

A A x m

 
 
         

5 5 50.0204 10 1.02 10 1.04 10x Pa x Pa x Pa 

(b) Determine the volume of the gas in state 2.

We know the pressure and temperature of the gas at both states plus we know the initial volume,
so we can develop the combined gas law.

PV
PV nRT nR

T
 

Since the quantity of  

PV

T  equals a constant, we can say:
1 1 2 2

1 2

pV p V

T T


Therefore:

  
 

5 3 3

3 31 1 2 2
2 5

1 2

1.02 10 1.50 10
1.47 10

1.04 10

x Pa x mpV p V
V x m

T T x Pa



  

  (c) Indicate below whether the process from state 2 to state 3 is isothermal, isobaric, or adiabatic.

       ____ Isothermal ____Isobaric ____Adiabatic

    Explain your reasoning.

The process is not isothermal because the temperature is going up.  It is not adiabatic because the
system is absorbing heat from the boiling water bath.  Therefore, it must be isobaric.  (constant 
pressure)

  (d) Is the process from state 4 to state 1 isobaric? ____Yes ____No

    Explain your reasoning.

This is the reverse process of state 2 – 3, which was isobaric, so this one ought to be the same

  (e) Determine the volume of the gas in state 4.

Using the assumption that the process is isobaric, the pressure is 1.02 x 105 Pa, the same as in 
state 1.  So:

 3 3

3 31 1 2 2 1 1 2
2 2

1 2 2 1

1.50 10 373
2.05 10

273

x m KpV p V pVT
V V x m

T T p T K



   

From 1995:
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 One mole of an ideal monatomic gas is taken through the cycle abca shown on the diagram.  
State a has volume Va = 17 x 103 cubic meter and pressure Pa = 1.2 x 105 pascals, and state c has
volume Vc = 51 x 103 cubic meter.  Process ca lies along the 250 K isotherm.  The molar heat 
capacities for the gas are Cp = 20.8 J/mol K, and Cv = 12.5 J/mol K.

Determine each of the following.

a. The temperature Tb of state b. 

 

 

5 3 3

2
1.2 10 51 10

736

1 8.31

N
x x m

pV m
pV nRT T K

N mnR
mol

mol K

 
 
    

 
 

 

b. The heat Qab added to the gas during process ab.

   1 20.8 736 250 10100ab

J
Q nc T mol K K J

mol K

 
     

 

c. The change in internal energy Ub  Ua.

U Q W W p V U Q p V        

  5 3 3 3 310100 1.2 10 51 10 17 10 6 020U J x Pa x m x m J     

d. The work Wbc done by the gas on its surroundings during process bc.

Work is a force acting through a distance --  distance is zero here.
or

0W p V no volume change W  

The net heat added to the gas for the entire cycle is 1,800 joules.  Determine each of the following.

e.  The net work done by the gas on its surroundings for the entire cycle.
0U Q W U Starts at a and ends at a    

1800net netW Q W J 
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a. The efficiency of a Carnot engine that operates between the maximum and minimum 
temperatures in this cycle.

736 250
0.66 66%

736

H C
c

H

T T K K
e or

T K

 
  

From 1996:

 The inside of the cylindrical can shown below has cross-sectional area 0.005 m2 and length 0.15 
m. The can is filled with an ideal gas and covered with a loose cap.  The gas is heated to 363 K 
and some is allowed to escape from the can so that the remaining gas reaches atmospheric 
pressure (1.0 x 105 Pa).  The cap is now tightened, and the gas is cooled to 298 K.

a. What is the pressure of the cooled gas?

Okay, let’s look at the ideal gas law first.  We can figure out how much gas we have just before 

we begin to cool it off.

PV
pV nRT n

RT
    

The number of moles doesn’t change and the volume doesn’t change when it is cooled.  So we 

can set the initial and final conditions equal to each other.

1 2 1 2 1 2
2

1 2 1 2 1

p V p V p p p T
n p

RT RT T T T
   

 5
5 41 2

2
1

1.0 10 298
0.82 10 8.21 10

363

x Pa KPT
P x Pa x Pa

T K
   

b. Determine the upward force exerted on the cap by the cooled gas inside the can.

 4 2

2
8.2 10 0.005 410

F N
p F pA x m N

A m

 
    

 
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If the cap develops a leak, how many moles of air would enter the can as it reaches a final 
equilibrium at 298 K and atmospheric pressure? (Assume that air is an ideal gas.)

This is a bit of work.  Nothing we can’t do, however.
pV

pV nRT n
RT

 

The inelegant way to do this is to find the number of moles when the lid was capped, then find the
number of moles after it was opened.  The difference is the number of extra moles of air that 
entered the can.

  

 

5 2

2

1

1.0 10 0.005 0.15

8.31 363

N
x m m

pV m
n

N mRT
K

mol K

 




5 2
1 0.000000249 10 2.49 10n x mol x mol 

  

 

5 3 2 1

2

2
2

1.0 10 5.0 10 1.5 10

8.31 2.98 10

N
x x m x m

pV m
n

N mRT
x K

mol K

 

 




1 2
2 0.3029 10 3.03 10n x mol x mol  

   2 2 2
2 1 3.03 10 2.49 10 0.54 10n n n x mol x mol x mol       

From 1998:
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 Students are designing an experiment to demonstrate the conversion of mechanical energy into 
thermal energy.  They have designed the apparatus shown in the figures below.  Small lead 
beads of total mass M and specific heat c fill the lower hollow sphere.  The valves between the 
spheres and the hollow tube can be opened or closed to control the flow of the lead beads.  

Initially both valves are open.

a.  The lower valve is closed and a student turns the apparatus 180o about a horizontal axis, so that 
the filled sphere is now on top.  This elevates the center of mass of the lead beads by a vertical 
distance h.  What minimum amount of work must the student do to accomplish this?

Work is a change in energy.  Gravitational PE is changing.

W mgh W Mgh

b.  The valve is now opened and the lead beads tumble down the hollow tube into the other hollow
sphere.  If all of the gravitational potential energy is converted into thermal energy in the lead 
beads, what is the temperature increase of the lead?

gQ U mc T mgh 

gh
T

c
 

c. The values of M, h, and c for the student’s apparatus are M = 3.0 kg, h = 2.00 m and c = 128 
J/(kg·K).  The students measure the initial temperature of the lead beads and then conduct 100 
repetitions of the “elevate and drain” process.  Again, assume that all of the gravitational 
potential energy is converted into thermal energy in the lead beads.  Calculate the theoretical 
cumulative temperature increase after the 100 repetitions.
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 2

2

9.8 2.00

0.153

128

m
m

s
T K

kg m

s kg K

 
 
   
  
 

     0.153 100 15.3K rep K

d. Suppose that the experiment were conducted using smaller reservoirs, so that M was one-tenth 
as large (but h was unchanged).  Would your answers to parts (b) and (c) be changed?  If so, in 
what way, and why?  If not, why not?

No, mass has no effect – it cancels out.

e. When the experiment is actually done, the temperature increase is less than calculated in part 
(c).  Identify a physical effect that might account for this discrepancy and explain why it lowers
the temperature.

Some of the energy is converted to other things besides heat.  Air resistance, sound, etc.  
Slows the beads reducing their acceleration causing the resulting temperature to be low.

From 1997:

 Three identical resistors, each of resistance 30  are connected in a circuit to heat water in a 
glass beaker.  24 V battery with negligible internal resistance provides the power.

a. The three resistors may be connected in series or in parallel.

i. If they are connected in series, what power is developed in the circuit?

 3 30 90s iR R          

V
I P IV
R

 
  

 
22 24

6.4
90

VV
P W

R
  



ii. If they are connected in parallel, what power is developed in the circuit?

1 1 1 1 1

30 30 30p pR R
   
   

       
10pR  

 
22 24

57.6
10

VV
P W

R
  


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b. Using the battery and one or more of the resistors, design a circuit that will heat the water
at the fastest rate when the resistor(s) are placed in the water.  Include an ammeter to 
measure the current in the circuit and a voltmeter to measure the total potential difference
of the circuit.  Assume the wires are insulated and have no resistance.  Draw a diagram of

the circuit in the box below, using the following symbols to represent the components in 
your diagram.

c. The resistor(s) in the circuit in part (b) are now immersed in a 0.5 kg sample of water, 
which is initially at 298 K.   The specific heat of water is 4,200 J/kg K.  Assume that all 
of the heat produced is absorbed by the water.
i.  Calculate the amount of time it takes for the water to begin to boil.

   0.5 4200 373 298 157500
J

Q mc T Q kg K K J
kg K

 
     

 

1
157 500 2 734

57.6

W W
P t J s

Jt P

s

 
 

    
 
 

ii.  Under actual experimental conditions, would the time taken for the water to boil be 
longer or shorter than the calculated time in part (c, i)?  Justify your answer.
Longer.  Some heat is lost to the environment.

d. As the circuit continues to provide energy to the water, vapor is formed at the same 
temperature as the boiling water.  Where has the energy used to boil the water gone?
A latent heat of evaporation is required to overcome the strength of the hydrogen bond
intermolecular forces.

A

V
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From 1992:

 A portion of an electric circuit connected to a 40-ohm resistor is embedded in 0.20 kilogram of a
solid substance in a calorimeter.  The external portion of the circuit is connected to a 60-volt 
power supply, as shown.

a. Calculate the current in the resistor.

V IR

60
1.5

40

V V
I A
R

  


b. Calculate the rate at which heat is generated in the 
resistor.

Heat is energy, and the rate of energy is power

P IV               1.5 60 90P A V W 

c. Assuming that all of the heat generated by the resistor is absorbed by the solid substance, 
and that it takes 4 minutes to raise the temperature of the substance from 20°C to 80°C, 
calculate the specific heat of the substance.

60
90 4 min 21600

1min

W J s
P W Pt J

t s

  
     

   

Work is the change in energy

Q mc T            0 0

21600
1800

0.2 80 20
o

Q J J
c
m T kg Ckg C C

  
 

d. At 80°C the substance begins to melt.  The heat of fusion of the substance is 1.35 x 105 
joules per kilogram.  How long after the temperature reaches 80°C will it take to melt all 
of the substance?

  50.2 1.35 10 27 000F

J
Q mL kg J

kg

 
     
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t


27 000 1min
300 5 min

60
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W J
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JP s

s

 
    

 

e. Draw a graph of the heating curve for the substance on the axes below, showing the 
temperature as a function of time until all of the solid has melted.  Be sure to put numbers
and units on the time scale.
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The Cremation of Sam McGee  

There are strange things done in the midnight sun by the men who moil for gold; 
The Arctic trails have their secret tales that would make your blood run cold; 
The Northern Lights have seen queer sights, but the queerest they ever did see 
Was that night on the marge of Lake Lebarge I cremated Sam McGee. 

Now Sam McGee was from Tennessee, where the cotton blooms and blows. 
Why he left his home in the South to roam 'round the Pole, God only knows. 
He was always cold, but the land of gold seemed to hold him like a spell; 
Though he'd often say in his homely way that he'd "sooner live in hell". 
On a Christmas Day we were mushing our way over the Dawson trail. 
Talk of your cold! through the parka's fold it stabbed like a driven nail. 

If our eyes we'd close, then the lashes froze till sometimes we couldn't see; 
It wasn't much fun, but the only one to whimper was Sam McGee. 
And that very night, as we lay packed tight in our robes beneath the snow, 
And the dogs were fed, and the stars o'erhead were dancing heel and toe, 
He turned to me, and "Cap," says he, "I'll cash in this trip, I guess; 
And if I do, I'm asking that you won't refuse my last request." 
Well, he seemed so low that I couldn't say no; then he says with a sort of moan: 
"It's the cursed cold, and it's got right hold till I'm chilled clean through to the bone. 
Yet 'tain't being dead -- it's my awful dread of the icy grave that pains; 
So I want you to swear that, foul or fair, you'll cremate my last remains." 

A pal's last need is a thing to heed, so I swore I would not fail; 
And we started on at the streak of dawn; but God! He looked ghastly pale. 
He crouched on the sleigh, and he raved all day of his home in Tennessee; 
And before nightfall a corpse was all that was left of Sam McGee. 

There wasn't a breath in that land of death, and I hurried, horror-driven, 
With a corpse half hid that I couldn't get rid, because of a promise given; 
It was lashed to the sleigh, and it seemed to say: "You may tax your brawn and brains, 
But you promised true, and it's up to you to cremate those last remains." 

Now a promise made is a debt unpaid, and the trail has its own stern code. 

4 9min
.
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In the days to come, though my lips were dumb, in my heart how I cursed that load. 
In the long, long night, by the lone firelight, while the huskies, round in a ring, 
Howled out their woes to the homeless snows -- O God! How I loathed the thing. 

And every day that quiet clay seemed to heavy and heavier grow; 
And on I went, though the dogs were spent and the grub was getting low; 
The trail was bad, and I felt half mad, but I swore I would not give in; 
And I'd often sing to the hateful thing, and it hearkened with a grin. 
Till I came to the marge of Lake Lebarge, and a derelict there lay; 
It was jammed in the ice, but I saw in a trice it was called the "Alice May". 

And I looked at it, and I thought a bit, and I looked at my frozen chum; 
Then "Here", said I, with a sudden cry, "is my cre-ma-tor-ium." 
Some planks I tore from the cabin floor, and I lit the boiler fire; 
Some coal I found that was lying around, and I heaped the fuel higher; 
The flames just soared, and the furnace roared -- such a blaze you seldom see; 
And I burrowed a hole in the glowing coal, and I stuffed in Sam McGee. 

Then I made a hike, for I didn't like to hear him sizzle so; 
And the heavens scowled, and the huskies howled, and the wind began to blow. 
It was icy cold, but the hot sweat rolled down my cheeks, and I don't know why; 
And the greasy smoke in an inky cloak went streaking down the sky. 

I do not know how long in the snow I wrestled with grisly fear; 
But the stars came out and they danced about ere again I ventured near; 
I was sick with dread, but I bravely said: "I'll just take a peep inside. 
I guess he's cooked, and it's time I looked";. . . then the door I opened wide. 

And there sat Sam, looking cool and calm, in the heart of the furnace roar; 
And he wore a smile you could see a mile, and he said: "Please close that door. 
It's fine in here, but I greatly fear you'll let in the cold and storm – 
Since I left Plumtree, down in Tennessee, it's the first time I've been warm." 

There are strange things done in the midnight sun By the men who moil for gold; 
The Arctic trails have their secret tales That would make your blood run cold; 
The Northern Lights have seen queer sights, But the queerest they ever did see 
Was that night on the marge of Lake Lebarge I cremated Sam McGee. 

---- Robert Service
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