Curriculum Map 6th Grade Science

Time: when topic will be taught and how long will be spent on topic	Standard: Indiana Academic Standard being Taught	Topic: Content being taught and Materials used
August		 Methods of Science iLearn BOY Science Resource Methods of Science (NOS in book)
September Chapter One (1 weeks) Chapter Two (3 weeks)		 Chapter One - Speed, Acceleration, and Velocity Describing Motion (Lesson One) Speed and Velocity (Lesson Two) Distance/Time Graphs Chapter Two - Energy and Energy Transformations Forms of Energy (Lesson One) Energy Transformations (Lesson Two)
October	MS-PS4-1 . Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave MS-PS4-2. Develop and use a model to describe that waves are	 Chapter Three - Waves Introduction to Waves (Bill Nye Video) What Are Waves? (Lesson One) Wave Properties (Lesson Two) Wave Interactions (Lesson Three)

	reflected, absorbed, or transmitted through various materials.	
November	MS-PS4-1 . Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave	 Chapter Four - Sound and Light Sound (Lesson One) Light (Lesson Two) Mirrors, Lenses, and the Eye (Lesson Three)
	MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	
	MS-PS4-3 . Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog	
	signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in Wi-Fi devices,	

	and conversion of stored binary patterns to make sound or text on a computer screen.]	
December	 MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. 	 Chapter Five - Exploring Space Observing the Universe (Lesson One) Electromagnetic Spectrum Types of satellites Chapter Six - The Earth-Sun-Moon System Earth's Motion (Lesson One) Earth's Moon (Lesson Two) Eclipses and Tides (Lesson Three) Lunar Phases
January	 MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system. 	 Chapter Seven - The Solar System The Structure of the Solar System (Lesson One) The Inner Planets (Lesson Two) The Outer Planets (Lesson Three) Dwarf Planets and Other Objects (Lesson Four)
February	MS-LS1-6. Construct a	Chapter Eight - Matter and Energy in the

	photosynthesis in the cycling of matter and flow of energy into and out of organisms. MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	• Energy in Ecosystems (Lesson Three)
	MS-LS2-3 . Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	
March	MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	 Chapter Nine - Populations and Communities Populations (Lesson One) Changing Populations (Lesson Two) Communities (Lesson Three)
	MS-LS2-2 . Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems	
	MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical	

	or biological components of an ecosystem affect populations. MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.	
April		 Chapter Ten - Biomes and Communities Land Biomes (Lesson One) Aquatic Ecosystems (Lesson Two) How Ecosystems Change (Lesson Three)
May		Testing Review