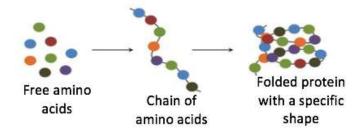
Lesson 6: Monday, March 30, 2020. Biology MHS AIM: How does an amino acid chain turn into a functional protein with a specific role?

This picture is a little abstract, but you can see "the big thing" is the **ribosome**, and the **mRNA** *is moving through it*. You can see that **3** mRNA bases are "locked into" the ribosome. You can also see that a "*growing protein chain*" of "amino acids" is coming out of the ribosome. As the ribosome reads the mRNA, *it creates a chain of amino acids*, which will turn into the final **protein**

At this point, you should be able to go from **DNA**, to **mRNA**, to **amino acid**. Don't forget, the *sequence of DNA* that codes for the protein is called a **GENE**. The DNA in the game must first be turned into a strand of mBNA. Then

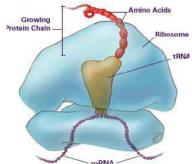
the gene must *first be turned into a strand of mRNA*. Then, the **mRNA** goes to the **ribosome**, where it is read **three** *bases at a time*. Every three bases codes for ONE amino acid. To determine which amino acid the ribosome will code for, you must use the **universal genetic code chart.** A protein is built from a sequence of amino acids.

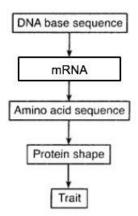
EXAMPLE:


DNA:	ТАС	ССА	ТGС	CGA	ССТ
mRNA:	AUG	GGU	ACG	GCU	G G A
Amino acid:	met	gly	thr	ala	gly

NOW YOU PRACTICE. If given a sequence of DNA, you should be able to complete the rest.

DNA	ТТА	CAA	G A T	ΑΑΑ	G G A	GTA	ACC	ACT
mRNA								
Amino acid								


What's up with the "START" and "STOP" amino acids?....


- In real life, all proteins start with Met (*methionine*), which is the "**start**" amino acid.
- If the ribosome reads an mRNA sequence that codes for a **STOP**, it is a signal to release the chain of amino acids.
- Once the chain of amino acids is released, it will bend, fold, and twist into a functional protein with a specific SHAPE!!!
- ONCE AGAIN- it leaves the ribosome as a *specific chain of amino acids*.
- The sequence of amino acids will determine *how* the proteins bends, folds, and twists.
- This determines the final **SHAPE** of the protein, which will determine its **JOB**.

Universal Genetic Code Chart Messenger RNA Codons and the Amino Acids for Which They Code

	U	С	A	G	
l	UUU PHE UUC PHE UUA UUG LEU	UCU UCC UCA UCG	UAU UAC } TYR UAA UAG } STOP	UGU UGC } CYS UGA } STOP UGG } TRP	UCAG
c	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC } HIS CAA CAG } GLN	$\left.\begin{smallmatrix} CGU\\ CGC\\ CGA\\ CGG \end{smallmatrix}\right\} \text{ arg }$	UCAG
4	AUU AUC AUA AUG } ILE AUG } MET or START	ACU ACC ACA ACG	AAU AAC } ASN AAA AAG } LYS	AGU AGC } SER AGA AGG } ARG	U C A G
G		GCU GCC GCA GCG	GAU GAC } ASP GAA GAG } GLU	GGU GGC GGA GGG	UCAG

