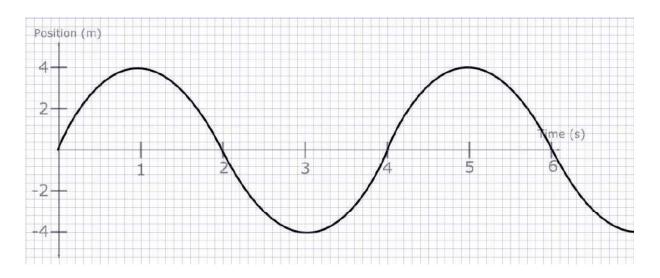

NAME	DATE

Scenario

A cart of mass m, resting on a smooth surface, is attached to an ideal spring. The cart is displaced to the right a distance Δx from equilibrium and released. While the cart oscillates around the equilibrium position, a motion detector collects data to make the following graph of position as a function of time.


Data Analysis

PART A: Using the graph above, determine the following:

T	f	ω	Time(s) of maximum positive velocity	Time(s) of maximum negative velocity	Time(s) when velocity is zero	Time(s) of maximum positive acceleration	Time(s) of maximum negative acceleration	Time(s) when acceleration is zero

PART B: Remember from math class that the equation to describe a cosine wave is $x = A\cos(2\pi ft)$, where A is the amplitude, f is the frequency, and x is the position as a function of time t. In terms of the data you collected in Part A, write the equation for the position of the cart as a function of time.

Y =			

PART C:	Another group of students collected the following data from their motion sensor. What is one possible explanation for the differences in the graphs created by the two groups?
PART D:	Write the equation that describes the position vs. time of the second group's cart.

Using Representations

PART E: The second group repeated their procedure thinking that perhaps if they added mass to the cart, it would help their analysis. On the graph in Part C above, sketch what the position vs. time graph would look like for a cart with a mass of 4m.