# GLUE THIS PAGE TO YOUR NOTEBOOK

## ANS WERIKEY WATER QUALITY

## guided notes



## WATER SYSTEM HEALTH

When it comes to the health of a water system, there are many factors that go into it. The balance between physical, chemical and biological variables determines the health of a water system.

| PHYSICAL                                                                       | CHEMICAL                                                                                             | BIOLOGICAL                                                          | These variables                                                         |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| <ul><li>Temperature</li><li>Turbidity</li><li>Water</li><li>Movement</li></ul> | <ul> <li>Dissolved oxygen (+ other gases)</li> <li>pH</li> <li>Nitrates</li> <li>Salinity</li> </ul> | <ul><li>Fish</li><li>Algae</li><li>Insects</li><li>Plants</li></ul> | are subject to<br>change from<br>both natural<br>and man—made<br>forces |

- Freshwater is a major concern because it is the main source of water for humans and animals

- Our freshwater that we use can be <u>SAFE</u> or <u>POTABLE</u>



## PHYSICAL INDICATORS

## **TEMPERATURE**

- The temperature of a body of water determines the organisms that can live there
- Many organisms have a preferred temperature range where they will thrive
  - o THINK ABOUT IT! We cannot thrive in an environment that is  $-50^{\circ}$ , but some organisms can!
- As the temperature of the water increases:
  - o It is able to dissolve more sediment which can block the light and not allow photosynthesis to occur
  - o It dissolves LESS oxygen (because particles are moving too fast and  $O_2$  can escape into the air) and may not contain enough for organisms to survive

### TURBIDITY

Turbidity is how clear/cloudy a body of water is.

- Cloudiness is due to the amount of sediment dissolved in the water
- A high turbidity = not potable
  - o Can lead to increased temperatures, decreased DO, and impairment of some aquatic organisms





## CHEMICAL INDICATORS

## DISSOLVED OXYGEN

Dissolved oxygen is the amount of oxygen in water that is available for aquatic organisms to use.

- The level of oxygen in surface water is important for many organisms such as zooplankton and fish to thrive.
- There are two ways oxygen gets into the water:
  - 1. From the AIR (being trapped by waves and moving currents)
  - 2. From PLANTS releasing  $O_2$  during photosynthesis



## pH LEVEL

The pH of a body of water determines how acidic or how basic it is.

- pH is measured on a scale from 0-14
  - 0.0-6 = ACIDIC
  - o 7 = NEUTRAL
  - o 8-14 = BASIC (Alkaline)



- The pH of water is known to have a synergistic effect, which means that materials (iron, aluminum, ammonia, mercury) introduced into bodies of water can have more or less of an impact based on the pH of the water.
  - o <u>EXAMPLE</u>: Metals in more acidic water can become more dangerous and more poisonous than they normally would be in neutral water.

## NITRATES + PHOSPHATES

Nitrates and phosphates come from Nitrogen and Phosphorous, which are essential nutrients for healthy plant growth.

- Too many nitrates or phosphates in drinking water can make it unhealthy

| SOURCES OF NITRATES                                                                                                                  | SOURCES OF PHOSPHATES                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <ul> <li>Runoff contaminated with fertilizers</li> <li>Septic tank leaks</li> <li>Sewage</li> <li>Natural deposit erosion</li> </ul> | <ul> <li>Human and animal waste</li> <li>Laundry</li> <li>Cleaning and industrial waste</li> </ul> |



## SALINITY

Salinity is the measure of salt in water and can be an indicator of how healthy a water system is.

- Salinity can enter water systems through natural processes of weathering rocks from wind and rain
- High concentrations of salinity can cause vegetation to become unhealthy or die and can lead to a decrease in biodiversity.

AMOUNT OF DIFFERENT
SPECIES LIVING IN AN AREA

## PIOLOGICAL INDICATORS

Biological indicators (Bioindicators) are macroinvertebrates that can give an indication of how healthy a water system is.

- The presence and numbers of the types of fish, insects, algae, plants and other aquatic organisms can tell us how healthy the water they live in is
- These organisms are usually easy to collect and identify
- These organisms are used to measure water health because many are very sensitive to pollution
  - o Poor water quality is indicated by a few number of bioindicator organisms in one place





The species in the GREEN to the right is a bioindicator species because it is disturbance—intolerant (which means it does not handle a change in the water well).

- As the water withdrawal occurs, and the water system is less healthy for these organisms, their abundance numbers begin to drop.

## WATER STEWARDSHIP

There has only been a growing awareness and concern for water pollution for the past 45-50 years. Before that, there was little concern about what was being put or dumped into our water systems.

- Part of this awareness came with the development of the Environmental Protection Agency (EPA) in 1970
- In 1972, the Clean Water Act established the regulations on putting pollutants into the water
  - o This gave the EPA the authority to test for pollutants and chemicals in the water and set maximum amounts allowed to be found in the water

## **BEFORE THE EPA**

The Cuyahoga River in Cleveland was so polluted with oils and chemicals that the water actually set fire!





**AFTER THE EPA** 

Now you can swim in that same river!

## GLUE THIS PAGE TO YOUR NOTEBOOK



## 8.E.1.3 — WATER QUALITY

## quided notes



## WATER SYSTEM HEALTH

When it comes to the \_\_\_\_\_ of a water system, there are many factors that go into it. The balance between \_\_\_\_\_, chemical and \_\_\_\_\_ variables determine the health of a water system.

| PHYSICAL                                                                  | CHEMICAL                                                                                         | BIOLOGICAL                                                          | These variables                             |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|
| <ul><li>Temperature</li><li>————</li><li>Water</li><li>Movement</li></ul> | <ul> <li>Dissolved oxygen<br/>(+ other gases)</li> <li>pH</li> <li></li> <li>Salinity</li> </ul> | <ul><li>Fish</li><li>Algae</li><li>Insects</li><li>Plants</li></ul> | are subject to from both natural and forces |

- Freshwater is a major \_\_\_\_\_ because it is the source of water for humans and animals
- Our freshwater that we use can be \_\_\_\_\_ or \_\_\_\_\_.



## PHYSICAL INDICATORS

## **TEMPERATURE**

| _   | · The of a body of water                      | determines the       | that                |
|-----|-----------------------------------------------|----------------------|---------------------|
|     | can live there                                |                      | 1,500,00            |
| _   | - Many organisms have a ter                   | mperature range      | - LESS 02<br>- MORE |
|     | where they will thrive                        |                      | SEDIMENT            |
|     | o THINK ABOUT IT! We cannot thrive            | in an environment    |                     |
|     | that is -50°, but some organisms co           | n!                   |                     |
| _   | · As the temperature of the water             | :                    | BETTER FOR          |
|     | o It is able to more                          | which can            | AQUATIC             |
|     | block the light and not allow                 | to occur             | LIFE!               |
|     | o It dissolves (becau                         | use particles are    |                     |
|     | moving too fast and ${\sf O}_2$ can escape in | nto the air) and may |                     |
|     | not contain enough for organisms to           | survive \            | /- MORE 02          |
|     |                                               |                      | - LESS              |
| IDR | RTNTTY                                        |                      | SEDIMENT            |

## TURBIDITY

\_\_\_\_\_ is how clear/\_\_\_\_ a body of water is.

- \_\_\_\_\_ is due to the amount of \_\_\_\_\_ dissolved in the water
- A \_\_\_\_\_ turbidity = not \_\_\_\_\_
  - o Can lead to increased temperatures, \_\_\_\_\_ DO, and impairment of some aquatic organisms



## CHEMICAL INDICATORS

| D   | $\Gamma \subset \subset \cap \Gamma$ | \/FD           | OXYGEN  |   |
|-----|--------------------------------------|----------------|---------|---|
| ונו | 1 .フ.フい                              | $V \Gamma I J$ | しみ けいてい | ١ |

Dissolved \_\_\_\_\_ is the amount of oxygen in water that is \_\_\_\_ for aquatic organisms to use.

- The level of oxygen in surface water is important for many organisms such as \_\_\_\_\_ and fish to thrive.
- There are \_\_\_\_ ways oxygen gets into the water:
  - 3. From the \_\_\_\_ (being trapped by waves and moving currents)
  - 4. From \_\_\_\_\_ releasing  $O_2$  during

## pH LEVEL

The \_\_\_\_ of a body of water determines how \_\_\_\_ or how \_\_\_\_ it is.

- pH is measured on a scale from 0-14 ACIDIC
  - 0 0-6 = \_\_\_\_
  - 0 7 = \_\_\_\_
  - o 8-14 = \_\_\_\_\_ (Alkaline)

| 按 | 00000000 | , , | 00000000 |   | 000000000 | 1000 |         | .01    | 200000000 |   | 1000000000 |            | 000000000 | vo.,       |
|---|----------|-----|----------|---|-----------|------|---------|--------|-----------|---|------------|------------|-----------|------------|
|   |          |     |          |   |           | 1    |         | 1      |           |   |            |            |           | 1          |
| ۵ | •        | ۵   |          | á | ۵         | ۵    | 0       | a      | ۵         | 6 | •          |            | (A)       | <b>(b)</b> |
|   |          |     |          |   |           |      | and the | . (00) |           |   | O. all     | the second |           |            |
|   |          |     |          |   |           | NIE  | LITE    | ) A I  |           |   |            |            |           |            |

- The pH of water is known to have a \_\_\_\_\_ effect, which means that materials (iron, aluminum, ammonia, mercury) introduced into bodies of water can have \_\_\_\_ or \_\_\_ of an impact based on the pH of the water.
  - o <u>EXAMPLE</u>: \_\_\_\_ in more acidic water can become more dangerous and more \_\_\_\_ than they normally would be in neutral water.

## NITRATES + PHOSPHATES

and \_\_\_\_\_ come from Nitrogen and Phosphorous, which are \_\_\_\_\_ nutrients for healthy plant growth.

- Too many nitrates or phosphates in drinking water can make it \_\_\_\_\_\_

| SOURCES OF NITRATES                               | SOURCES OF PHOSPHATES                           |
|---------------------------------------------------|-------------------------------------------------|
| <ul> <li>Runoff contaminated with</li> </ul>      | Human and animal                                |
| <ul><li>Septic tank leaks</li><li>—————</li></ul> | <ul><li>Cleaning and industrial waste</li></ul> |
| <ul> <li>Natural deposit<br/>erosion</li> </ul>   |                                                 |



| <b>~</b> •              |     |         | <br>-· <i>·</i> |
|-------------------------|-----|---------|-----------------|
| SA                      | 1 1 | NΙ      | <br>· \/        |
| $\rightarrow$ $\bowtie$ | 1 1 | - 1 / 1 | <br>l Y         |
| <b>∵</b> ′ ′ ′          |     | _ I N   | <br>            |

\_\_\_\_\_ is the measure of \_\_\_\_ in water and can be an indicator of how healthy a water system is.

- Salinity can enter water systems through natural processes of \_\_\_\_\_ rocks from wind and rain

- \_\_\_\_ concentrations of salinity can cause vegetation to become unhealthy or die and can lead to a \_\_\_\_\_ in \_\_\_ in \_\_\_\_



## PIOLOGICAL INDICATORS

Biological indicators (\_\_\_\_\_ that can give an indication of how healthy a water system is.

- The \_\_\_\_\_ and \_\_\_\_ of the types of fish, insects, algae, plants and other aquatic organisms can tell us how healthy the water they live in is
- These organisms are usually easy to \_\_\_\_\_ and identify
- These organisms are used to measure water health because many are very \_\_\_\_\_ to pollution
  - o \_\_\_\_ water quality is indicated by a \_\_\_\_ number of bioindicator organisms in \_\_\_ place





| The species in the to the right is a bioindicator species because it |
|----------------------------------------------------------------------|
| is                                                                   |
| (which means it does not handle a                                    |
| change in the water well).                                           |
| - As the water withdrawal occurs, and                                |
| the water system is healthy                                          |
| for these organisms, their                                           |
| numbers begin to                                                     |
| ·                                                                    |

## WATER STEWARDSHIP

There has only been a growing \_\_\_\_\_ and concern for water pollution for the past \_\_\_\_ years. Before that, there was little concern about what was being put or dumped into our water systems.

- Part of this awareness came with the development of the \_\_\_\_\_ (EPA) in 1970
- In 1972, the \_\_\_\_\_ established the regulations on putting \_\_\_\_ into the water
  - o This gave the EPA the authority to test for pollutants and chemicals in the water and set \_\_\_\_\_ amounts allowed to be found in the water

## **BEFORE THE EPA**

The Cuyahoga River in Cleveland was so \_\_\_\_\_ with oils and chemicals that the water actually set

\_\_\_\_!





AFTER THE EPA

Now you can swim in that same river!