6-6

Solve Absolute Value Inequalities

Date: _____

Goal: Solve absolute value inequalities.

Investigating Activity: Absolute Value Inequalities

(For use before Lesson 6.6)

QUESTION: How can you use a number line to solve absolute-value inequalities in the form: ||X| < c

- 1) **EXPLORE 1**: |xi < 4
 - Determine which values of X are solutions for X= -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5

Will you use open or closed circles? Why? OPEN CIRCL E

OPEN CIRCLE WHEN.

What compound inequality can describe the graph of the solution above?

QUESTION: How can you use a number line to solve absolute-value inequalities in the form: |XI > c

2) **EXPLORE 2**: |x| ≥ 2

Determine which values of X are solutions for X= -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5

- Will you use open or closed circles? Why? CLOSED CIRCLE: 4,7, =
- What compound inequality can describe the graph of the solution above?

X = -z or x > 2

3) EXPLORE: TRY THESE

- For each absolute value inequality
 - a) Determine which values of X are solutions for X= -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5
 - b) Sketch the graph
 - c) Write the compound inequality to describe the colution
 - 1. $|x + 3| \le 2$

2. $|x-3| \le 2$

Compound inequality:

14×45

3. $|x+3| \ge 1$

Compound inequality:

4. $|x-2| \ge 1$

Compound inequality:

P:2

4) **EXPLORE**: DRAW CONCLUSIONS

WHEN AN ABSOLUTE VALUE INEQUALITY USES = IT IS AN "AND" COMPOUND INEQUALITY.

7) WHEN THE THE ABSOLUTE VALUE INEQUALITY USES > ITT IS AN "OR" COMPOUND IN EQUALITY.

6,6 Notes - SOLVE ABSOLUTE VALUE INEQUALITIES

Rules to Solving Absolute Value Inequalities

- The inequality |ax+b| < c where c > 0 is equivalent to the compound inequality -c < ax + b < c
- The inequality |ax + b| > c where c > 0 is equivalent to the compound inequality

Example 1 Solve an absolute value inequality

ax+b <-c or ax+b>c

Solve the inequality. Graph your solution.

- a. $|x| \leq 9$
 - The distance between x and 0 is less than or equal to $\frac{9}{2}$. So, $\frac{-9}{2} \le x \le \frac{9}{2}$. The solutions are all real numbers Greater than EQUAL - 9 and LESSTHAN EQUAL 9

- **b.** |x| > 6
 - The distance between x and 0 is greater than 6. So, x > 6 or x < -6. The solutions are all real numbers greater than 6 or less than

Example 2 Solve "and" absolute value inequality

Solve |2x - 7| < 9. Graph your solution.

Rewrite as compound inequality.

SOLVE

The solution is C1 4 X 48

. TIP: Check several solutions in the original inequality

Graph:

Example 3 Solve "or" absolute value inequality

Solve $|x + 8| - 4 \ge 2$. Graph your solution.

Isolate the absolute value expression.

Rewrite as compound inequality.

SOLVE

The solution is (X \(\frac{2}{2} - 14\) O \(\chi \times 7 - 2\) TIP: Check several solutions in the original inequality

Graph:

Checkpoint -- Solve the inequality. Graph your solution.

1) 3|x-6| > 9

2) $|2x-5|-8 \le -3$

3) -5 | 6x - 1 | + 10 < 30

SOLVING INEQUALITIES

1) One-Step and Multi-Step Inequalities

9	Follo	w the ste	ps for s	olving an equa	REVERSE	the inequality symbol when					
	n	nult.	OR	divide	the	variable	by	a	neo	ative	number.
							-				

2) Compound Inequalities

If necessary, rewrite the inequality as two separate inequalities; solve each inequality separately.

In the solution, you must include the words ______ or _____ or ______

3) Absolute Value Inequalities

If necessary, isolate the absolute value expression on one side of the inequality.
 Rewrite the absolute value inequality as a <u>Compound</u> in equality; then solve it