Answer Key

Lesson 6.4

Practice Level C

1. similar **2.** cannot be determined **3.** similar

4. not enough information

5. $\triangle LMN \sim \triangle HGD$; both are 18° - 72° - 90° \triangle

6. $\triangle XTR \sim \triangle KAJ$ by the AA Similarity Post.

7. $\triangle QNM \sim \triangle PNO$ by the AA Similarity Post.

8. $\triangle ABC \sim \triangle EDC$; The vertical angles are \cong , so the AA Similarity Post. applies.

9. $\triangle RSV \sim \triangle RTU; \ \angle R \cong \angle R$ and there are two pairs of \cong corresponding $\angle s$.

10.
$$x = 5, y = \frac{\sqrt{149}}{2}$$
 11. $x = 3\frac{1}{3}, y = 4\frac{2}{3}$

12. not possible: can't be sure the triangles are

similar **13.** $x = \frac{\sqrt{306}}{3}, y = 12$ **14.** no **15.** yes **16.** yes **17.** (6, 4), (6, -4) **18.** (0, 9), (0, -9) **19.** $\left(\frac{54}{13}, \frac{36}{13}\right), \left(\frac{54}{13}, -\frac{36}{13}\right)$ **20.** (0, 4), (0, -4) **21.** (6, 9), (6, -9) **22.** $\left(\frac{24}{13}, \frac{36}{13}\right), \left(\frac{24}{13}, -\frac{36}{13}\right)$

23. You are given that $\angle CAB$ is a right \angle and \overline{AD} is an altitude. Then $\overline{AD} \perp \overline{BC}$ by the def. of altitude. So, $\angle CDA$ is a right \angle because if two lines are \bot , they intersect to form four right \angle s. Because all right \angle are \cong , $\angle CAB \cong \angle CDA$. You know that $\angle ACD \cong \angle ACD$ by the Reflexive Prop. of \cong . Therefore, $\triangle ABC \cong \triangle DAC$ by the AA

Similarity Post.

24. You are given $\overline{AC} \parallel \overline{GE}$ and $\overline{BG} \parallel \overline{CF}$. Then $\angle A \cong \angle E$ and $\angle EDF \cong \angle EHG$ by the Corr. $\angle B$ Post. But, $\angle EHG \cong \angle AHB$ by the Vertical $\angle S$ Congruence Thm. So, $\angle EDF \cong \angle AHB$ by the Transitive Prop. of \cong . Therefore, $\triangle ABH \sim \triangle EFD$ by the AA Similarity Post.

25. 900,000 km; The dashed line is perpendicular to the bases of the two triangles, so those bases are parallel. This leads to \cong alt. int. \triangle . Then the \triangle are similar by AA and you can form a proportion to estimate the Sun's diameter.