Remember: Binomial Models are DISCRETE RV's.
— Examples:
AP Statistics — 6.3B2 P(X<2) = P(X=0) + P(X=1)
, = = P(X<2) = P(X=0) + P(X=1) + P(X=2)
Goal: Understanding Binomial RV's
2 P(X>3) >P(X>4)
|. Binomial Setting: CYU (page 385): P(X23) = 1-P(X=2) P(X>3) = 1-P(X<3)
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ll.  Binomial Probabilities: Example: Rolling Doubles

In many games involving dice, rolling doubles is desirable. Rolling doubles mean the outcomes of two dice are the
same, such as 1&1 or 5&5. The probability of rolling doubles when rolling two dice is 6/36 = 1/6. Suppose that a
game player rolls the dice 4 times, hoping to roll doubles.

(a) What is the probability that all 4 rolls are not doubles? .
o DefinetheRV: LET X = THE NUMBER OF DouBLES N 4 Rows g¢ £ DICE.

s  Have the Binomial Conditions been met? .
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* State the parameters of the Binomial Distribution X HAS a4 Bidomint DisTZgoTion
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¢ Give the probability statement:
P( wo bou%L&Sb = P(x =0)
* How many ways can you roll doubles 0 times in 4 attempts?
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¢ Calculate the probability
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Remember: Binomial Models are DISCRETE RV's.  
Examples:
P(X<2) = P(X=0) + P(X=1) 
P(X≤2) = P(X=0) + P(X=1) + P(X=2)
P(X>3) ↔P(X≥4)
P(X≥3) = 1-P(X≤2)                     P(X>3) = 1-P(X≤3)


Examplie: Rolling Doubles (continued)

(b} Find the probability that the player gets doubles once in four attempts,

(d) Should the player be surprised if he gets doubles more than twice in four attempt

p(xyd) = P(X=®

¢ Give the probability statement:

P(x=1)
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o Calculate the probability
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How many ways can you roll doubles 0 times in 4 attempts?
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(¢) Find the probability that the player gets doubles twice in four attempts.
e  Give the probability statement:
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Can also be
written
P(X>3)
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How many ways can you roll doubles 2 times in 4 attempts?
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(e} Sumrnarize the probability distribution of the Random Variable X in the following table
Let X = number of doubles in 4 attempts, (X follows a binomial distribution with n = 4 and p = 1/6)
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Can also be 
written  
P(X≥3) 
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(f) Create a histogram the probability distribution § 4
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ll. Binomial Problem start to finish: Example: Tastes as Good as the Real Thing?\&:\

The makers of a diet cola claim that its taste is indistinguishable from the full calorie version of the same cola. To
investigate, an AP Statistics student named Emily prepared small samples of each type of soda in identical cups.
Then, she had volunteers taste each cola in a random order and try to identify which was the diet cola and which
was the regular cola. Overall, 23 of the 30 subjects made the correct identification,

If we assume that the volunteers really couldn’t tell the difference, then each one was guessing with a 1/2 chance of
beinmt.rfet X = the number of volunteers who correctly identify the colas.

(a) Explain why X is a binomial random variable,
Pawpey? YES., Guess CORAECTLY e NoT

TrDEPEND EMT Y Y& RAmG oLy o~ TEELS CANNOY
S Lt ASSIcmED, ASSUMES VoLUY M
° ’ TEL:.. ThE DIFF Ert~io s .

Nomdel 7?7 YES, Twele Ace 30TeiALS

goccess ? YES. The PROBA LI LITY OF GoessinNe Curescrty IS

ALwiavs S0Y,
/rp“s 7o A DiNossL DisTigutiond WITH N30 cpd P:.S.@

(b) Find the mean and the standard deviation of X. Interpret each value in context. 1_5 g?’o;il
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(c) Ofthe 30 volunteers, 23 made correct identifications. Does this give convincing evidence that the volunteers
can taste the difference between the diet and regular colas?
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What you need to know about binomial and geometric RV’s and their distributions
|Remember: Binomial and Geometric Models are DISCRETE RV's. See page 1 for examples |

Binomial Setting (BINS)

Geometric Setting (BITS)

. Binary? Each observation falls into one of
two categories: success or failure.

Binary? Each observation falls into one of
two categories: success or failure,

¢ Independent? The # observations are all
independent.

Independent? The n observations are all
independent,

e Number? There is a fixed number n of
observations.

Trials? The variable of interest is “the number
of trials required to obtain the 1* success.”

¢ Success? The probability of success, p, is
the same for each observation,

Success? The probability of success, p, is the
same for each observation.

Independence — knowing the result of one trial does not have any effect on the result of any other trial.

Binomial Distribution

Geometric Distribution

e  B(n,p) where
o nis the number of trials and
o pis the fixed probability

G(p) where
o p is the fixed probability

Variables used in formulas below

X=random variable

p = probability of success

q = (1-p) = means “probability of failure”

n = number of trials

Binomial Probability

To find the number of possible outcome:

3w
k Kl(n-k)
Learn how to use caleulator, No need to

memorize formula:
4
(2) =4nlr2==6

To find the probability for “k” successes:

P(X =k)= (:}p"(l -p)

k = # of successes

Geometric Probability

P(X=k) = (1-p)"'p
*  where k = number of trials until the first
success.

Probability it takes more than n trials to see the

1* success ¢
P>k = (1-p)

Binompdf(n,p,k) - “Point™ density function
Remember to state distribution Bin,p)

Geometpdf(p,k) — “Point” density function
Remember to state distribution G(p)

Binomedf(n,p,k) — Cumulative density function
Remember to state distribution B(n,p)

Geometedf(p,k) — Cumulative density function
Remember to state distribution Gip)

p=np

& = Jnp(i-p)
Conditions: np=10 and n(1-p) 210

*  Better approximation as # gets larger.

Don’t memorize the formulas for the geometric
mean and standard deviation.
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Remember: Binomial  and Geometric Models are DISCRETE RV's.  See page 1 for examples


