Momentum

5.0 Conservation of Energy and Momentum

NAME

DATE _

Scenario

Angela, Blake, Carlos, and Dominique are performing an experiment involving Cart 1 and Cart 2, which are both light and the friction in the bearings can be neglected. The students push Cart 1 against a spring (force constant k), compressing the spring a distance x from its equilibrium length. Cart 1 is released, collides with Cart 2, and sticks. The two carts

continue with constant speed $v_{\rm f}$ after the collision. The students are tasked with

making $\boldsymbol{v}_{\rm f}$ as fast as possible but with the following constraints:

- *The spring compression distance x cannot be varied.*
- Masses can be added or removed from either Cart 1 or 2 or both as long as the total mass of the system ($M = m_1 + m_2$) remains constant.

Argumentation

PART A: Answer the following question. Explain your reasoning. You may cite equations but do not manipulate or combine equations as part of your explanation.

i. After Cart 1 is launched, how will the total mechanical energy of the system (spring and m_1), change if m_1 is large?

Claim: _

Evidence/Reasoning:

ii. After Cart 1 is launched, how will the total momentum of the system change if m_1 is large?

Claim: _

Evidence/Reasoning: _____

PART B: Based on one or both of your answers to Part A, explain whether m_1 should be large or small to make the final speed v_f the fastest.

Quantitative Analysis

PART C: Derive an expression for $v_{j'}$ the combined cart speed, in terms of m_1 , M, x, and k. Then explain how this expression supports your assertions in Part B.

(1)	
(2)	
(3)	
(n)	
(4)	
(5)	
(0)	
	1

(6)		
(7)		
(8)		
(0)		
Line number supports r	ny claim by:	-
		-
		-
		-