

Preparing for Smarter Balanced Math Assessments

Bryan Toller

Mathematics Assessment Specialist Oregon Department of Education

DEVELOPMENT TIMELINE

STUDENT PERSPECTIVES

"Typing was hard but I thought it [test] was more different and cool. Writing is good because I can write down my thoughts. I have good explanations that I want someone to hear." –Jacklyn, 5th Grade

"Practice typing because there's a lot of typing, and practice essays...how to do them...how to write them." –Van, 4th Grade

"Practice typing." -Darbi, 5th Grade

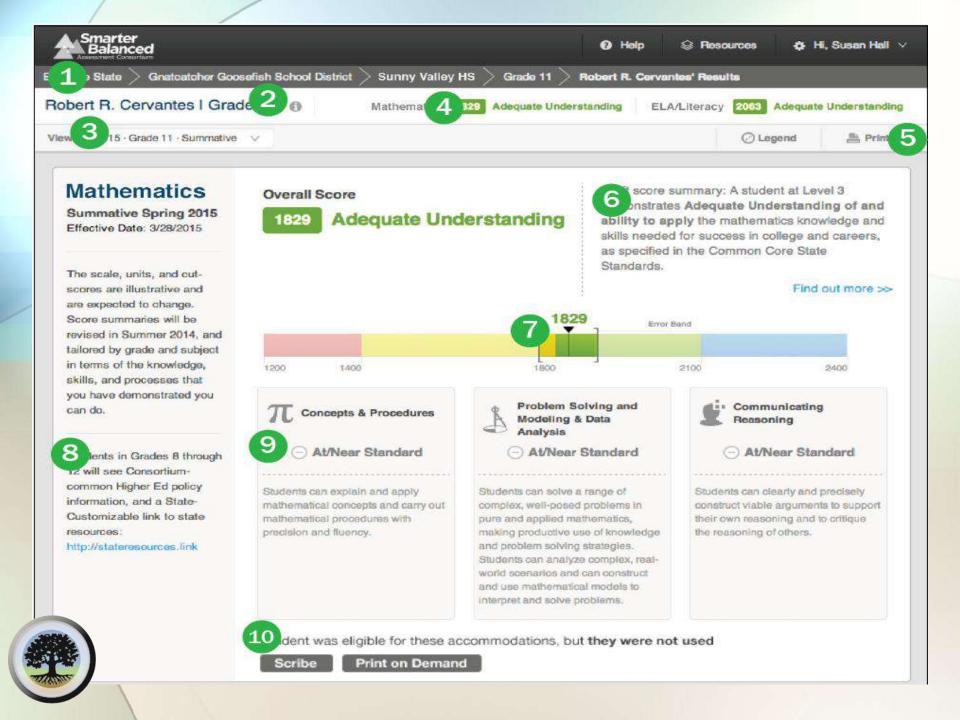
"...Good to teach us [students] how to go more in-depth with essay, paragraph, and sentence structure." –Ella, 6th Grade

"Tell them they need to prepare for not just clicking an answer but wording it [responses] in a way that makes sense...work on typing and work on how to answer in words." –Sicily, 6th Grade

MOVING FORWARD

2013-14	2014-15 and beyond
OAKS Reading and Writing	Smarter Balanced ELA
OAKS Math	Smarter Balanced Math
OAKS Science and Social Sciences	OAKS Science and Social Sciences
Extended Assessment	Extended Assessment
ELPA	ELPA
Kindergarten Assessment	Kindergarten Assessment

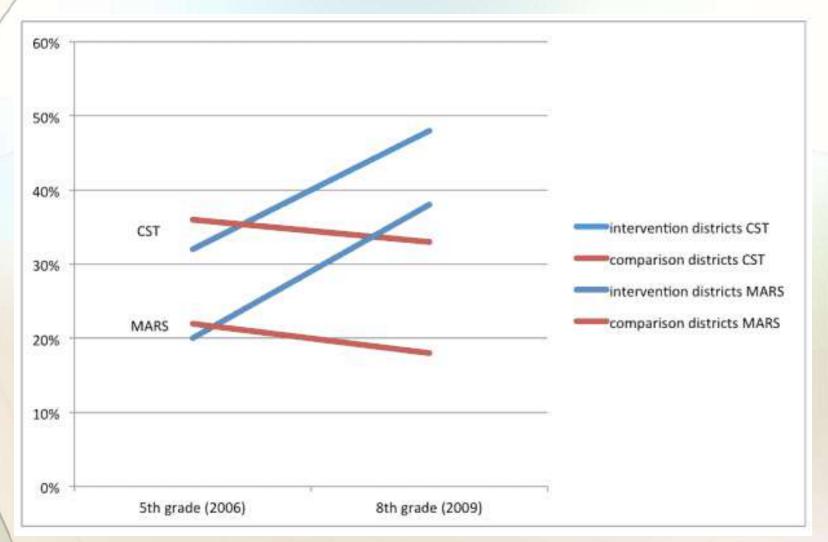
New Portal Address for OAKS: http://oaksportal.org



TESTING WINDOWS

Smarter Balanced Math	March 3 rd to June 12 ^{th**}
Smarter Balanced ELA	March 3 rd to June 12 ^{th**}
Science and Social Sciences	January 6 th to June 12 th
12 th Grade Retest Math and Reading	January 6 th to June 12 th
12 th Grade Retest Writing	January 6 th to March 13th
ELPA	January 6 th to April 15 th
Kindergarten Assessment	August I I th to October 23 rd

**Testing may begin after students receive 66% of instruction Grades 3-8, and 80% of instruction High School



"...the best preparation for the CCSS assessments, with their commitment to assessing all the standards, including the Standards for Mathematical Practice, is high-quality instruction..."

NCTM President Diane J. Briars

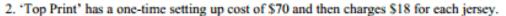
STUDENT ACHIEVEMENT BEFORE AND AFTER INTERVENTION

MARS TASK

Baseball Jerseys

This problem gives you the chance to:

· work with equations that represent real life situations


Bill is going to order new jerseys for his baseball team.

The jerseys will have the team logo printed on the front.

Bill asks two local companies to give him a price.

Using n for the number of jerseys ordered, and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Print It'.

Using n to stand for the number of jerseys ordered, and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Top Print'.

Bill decides to order 30 jerseys from 'Top Print'.
 How much more would the jerseys cost if he buys them from 'Print It'?
 Show all your calculations.

4. Use the two equations from questions 1 and 2 to figure out how many jerseys Bill would need to buy for the price from 'Top Print' to be less than from 'Print It'. Explain how you figured it out.

PERFORMANCE ASSESSMENT TASKS

Video: How to Learn Math: Teaching for a Growth Mindset

http://youtu.be/EbhJk62N05I

SIX ITEM TYPES

- Selected Response
- 2. Constructed Response
- 3. Extended Response
- 4. Technology Enabled
- 5. Technology Enhanced
- 6. Performance Tasks

SELECTED RESPONSE

SINGLE RESPONSE— MULTIPLE CHOICE

Select the statement that explains how the values of the numbers 420 and 4200 are different.

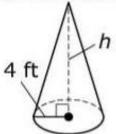
- A 4200 is 1000 times as large as 420
- 4200 is 100 times as large as 420
- © 4200 is 10 times as large as 420
- 6 4200 is 1 time as large as 420

SELECTED RESPONSE

MULTIPLE CORRECT OPTIONS

Select all equations that are true.

$$\frac{17}{100} = 0.17$$

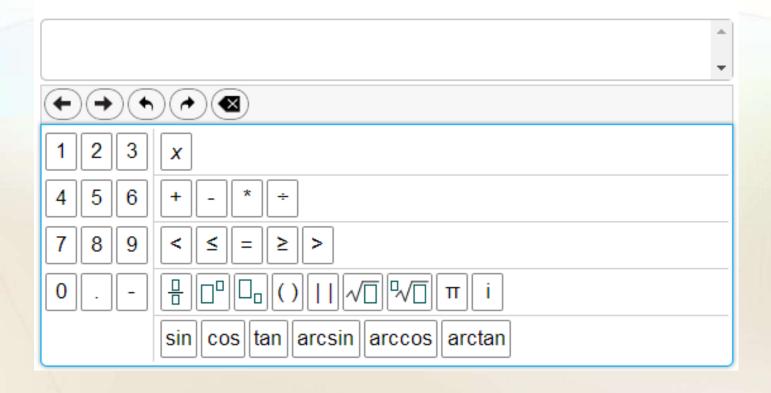

$$\frac{9}{100} = 0.09$$

$$\frac{6}{100} = 0.60$$

CONSTRUCTED RESPONSE

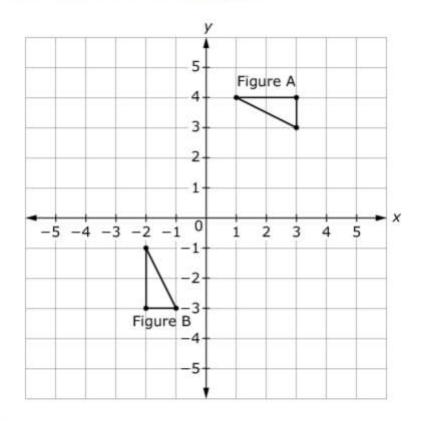
A cone with radius 4 feet is shown. Its approximate volume is 165 cubic feet.

Enter the height of the cone, in feet. Round your answer to the nearest hundredth.



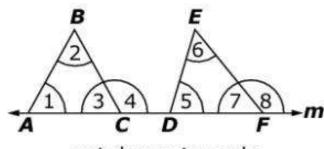
CONSTRUCTED RESPONSE

Multiply and combine like terms to determine the product of these polynomials.


$$(2x-3)(5x+6)$$

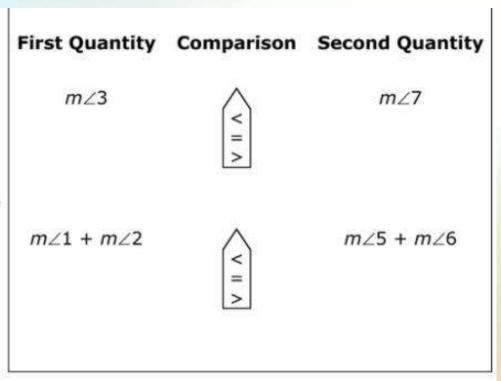
EXTENDED RESPONSE

Two figures are shown on the coordinate grid.



Show that Figure A and Figure B are congruent by describing a sequence of basic transformations that maps Figure A onto Figure B. In your response, be sure to identify the transformations in the order they are performed.

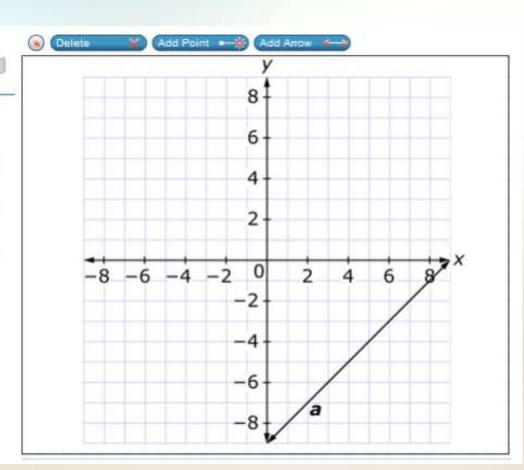
TECHNOLOGY ENABLED


The base of triangle ABC and the base of triangle DEF lie on line m, as shown in the diagram.

not drawn to scale

The measure of $\angle 4$ is less than the measure of $\angle 8$.

For each comparison, select the symbol (<, >, =) that makes the relationship between the first quantity and the second quantity true.



TECHNOLOGY ENHANCED

1834

Line a is shown on the graph. Use the Add Arrow tool to construct line b on the graph so that:

- Line a and line b represent a system of linear equations with a solution of (7, -2).
 The slope of line b is greater than -1 and less than 0.
- The y-intercept of line b is positive.

4TH GRADE PERFORMANCE TASK

A TRIP TO THE ZOO

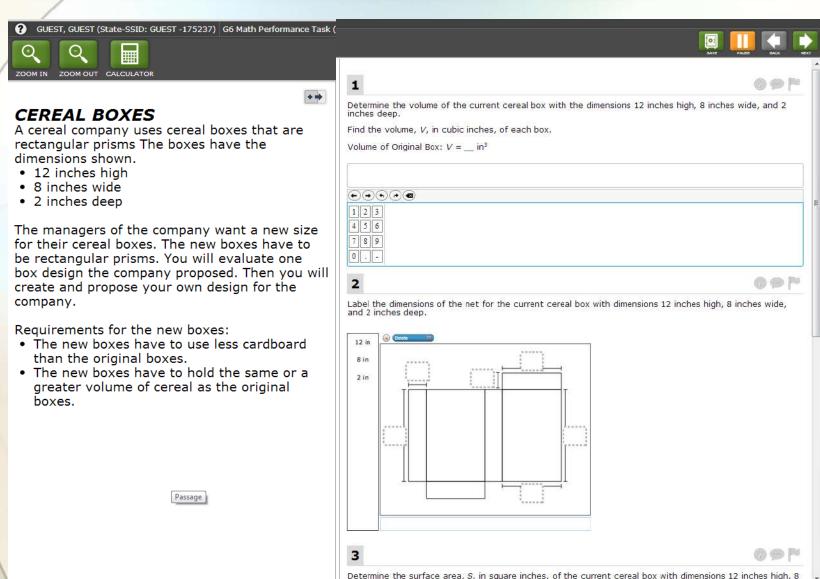
Anna and her family go to the zoo. The zoo ticket prices, snack shop menu, and gift store prices are shown in the tables.

Snack Shop Menu

Food	Price
Hamburger	\$5
Cheeseburger	\$6
Salad	\$3
Pizza	\$3
Drinks	Price
Water	\$1
Milk	\$2
Juice	\$3
Soda	\$3

Zoo Ticket Prices

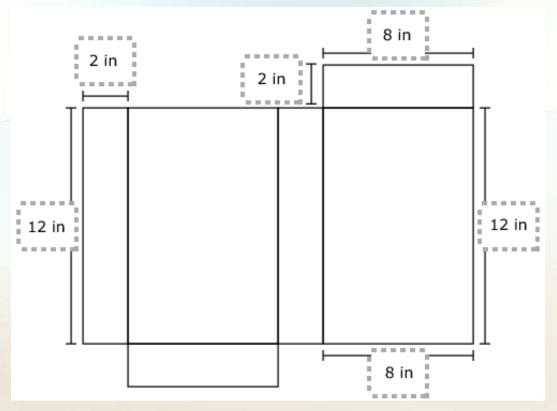
Type of Ticket	Price	
Adult (ages 12-64)	\$16	
Senior (ages 65+)	\$13	
Child (ages 2-11)	\$11	
Under 2	Free	


Gift Store Prices

Gift	Price
	\$ 9
Stuffed panda bear	
200	\$4
Zoo magnet	
	\$6
Pack of 4 pens	
Sand Masters	\$8
Photo frame	

The family has \$100 to spend at the zoo...

6TH GRADE PERFORMANCE TASK



Full credit response (1 point) includes 192 in³

No credit response (0 points) includes none of the features of a full credit response

Full credit response (1 point) includes

No credit response (0 points) includes none of the features of a full credit response

Full credit response (2 point) includes 272 in²

Partial credit response (1 point) includes all of the following common mistakes 136, 176, 248, 256, 80, 224, 240 or square inches consistent with an error in question 2

No credit response (0 points) includes none of the features of a full or partial response

Full credit response (2 point) includes
Comparing the proposed volume to the requirements -and-

Comparing the proposed surface area to the requirements -and-

Judging the proposed dimensions to be inappropriate

Partial credit response (1 point) includes Valid comparisons but no judgment call

No credit response (0 points) includes none of the features of a full credit response

Full credit response (3 points) includes
Giving the dimensions for the cereal box
design -and-

Explaining how the design meets the volume requirement -and-

Explaining how the design meets the surface area requirement

Partial credit response (2 points) includes two of the full credit features

Partial credit response (1 point) includes <u>one</u> of the full credit features

SCORE STUDENT RESPONSES

SCORING PERFORMANCE TASKS

Practice Test Grade 6 Performance Task Question 4

Question 4.

The company proposes a new cereal box with dimensions 10.5 inches high, 7.5 inches wide, and 4 inches deep. The new cereal box is a rectangular prism. Determine if this new box meets each of the requirements*. Explain why or why not.

*requirements (from question 1) The volume must be greater than or equal to 192 in² and the surface area must be less than 272 in²

6TH GRADE QUESTION 4

Full credit response (2 points) includes

Comparing the proposed volume to the requirements -and-

Comparing the proposed surface area to the requirements

-and-

Judging the proposed dimensions to be inappropriate

Partial credit response (1 point) includes

Valid comparisons but no judgment call (vise versa)

No credit response (0 points) includes

None of the features of the full or partial response

6TH GRADE QUESTION 4

Full credit response (2 points) example:

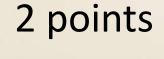
V = 315 cubic inches and 315 > 192. S = 301.5 square inches and 301.5 > 272. The box should not be used because the surface area is too large.

Partial credit response (I point) examples:

V = 315 cubic inches and 315 > 192. S = 301.5 square inches and 301.5 > 272.

-or-

The box should not be used because the surface area is too large


No credit response (0 points) example:

The box can be used because it meets the requirements.

 $10.5 \times 7.5 \times 4 = 315 \text{ in}^3$

 $2(10.5 \times 7.5 + 10.5 \times 4 + 7.5 \times 4) = 301.5$

No it doesn't meet the requirements the volume is greater $315 \text{ in}^3 > 192 \text{ in}^3$, but the surface area is larger $301.5 \text{ in}^2 > 272 \text{ in}^2$ using more cardboard.

Volume of a new box is 315 in³ and 315 > 192. Surface area of new box is 301.5 in² and 272>301.5. The box does not follow the new requirements, because the surface area is too big.

1 point

Volume = 315 in² S.A = 301.5 in Surface area is too big! Takes too much cardboard

$$42 \times 2 = 84$$
 10.5
 $30 \times 2 = 60$ \times 4 84
 78.75 2 260
 78.75 $+ 40$ $+ 157.50$
 157.50 42 301.50

1 point

$$V = 315$$

$$V = 315$$
 SA = 301 Yes

0 points

 $10.5 \times 7.5 \times 4 = 315$ volume

 $10.5 \times 4 \times 2 = 80$

 $7.5 \times 4 \times 2 = 60$

 $10.5 \times 7.5 \times 2 = 157.5$ 297.5 surface area

It doesn't work because the new cereal box uses more cardboard 297.5 (new sa) 272 (old sa)

1 point

 $V = 315in^3$

 $SA = 301.5in^2$

This does not work. The volume is bigger, but it uses more cardboard.

MAKE WRITING A PART OF THE LEARNING

Video: Steve McKinney: Keeping It Real

http://www.Americaachieves.org http://bcove.me/eqw8vuyz

BLOG

WESLEY'S BLOG

MONDAY, JANUARY 10, 2005

Derived Measurement Extended Response

Mark's heart beats 16 times in 15 seconds. At that rate, how many times will it beat in one minute? Be sure to include the appropriate unit.

I know that Mark's heart beats 16 times in 15 seconds. I also know that 15 seconds is a quarter of a minute. So I multiplied 16 by 4, and the product was 64 BPM. The reason I multiplied 16 by 4 is because I know that 15 seconds divides into 1 minute 4 times. That is how I got my solution.

POSTED BY PERIOD5WB AT 10:34 AM

ABOUT ME

PERIOD5WB

VIEW MY COMPLETE PROFILE

PREVIOUS POSTS

Rational or Irrational?

Short Cycle 2

1 COMMENTS:

misterteacher said...

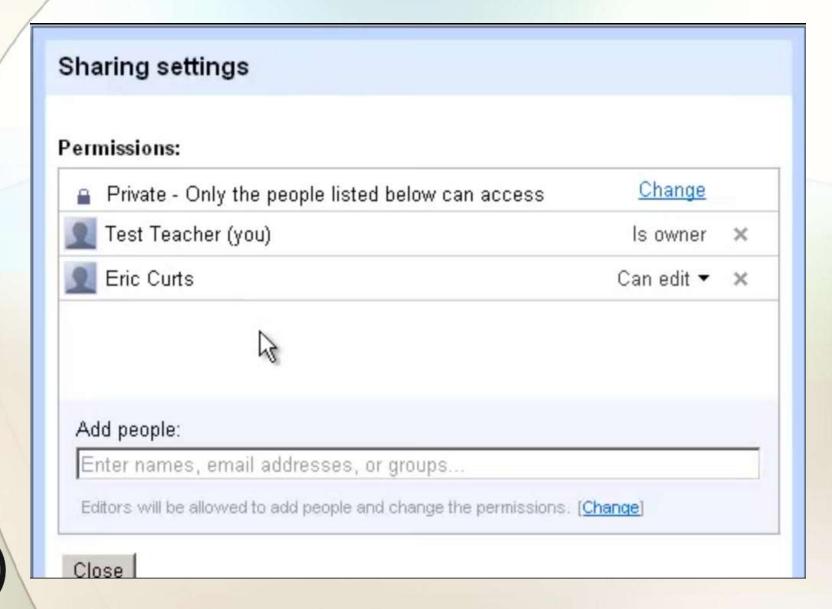
Wesley,

Here is how I scored your response:

GOOGLE FORMS

The Box Factory

* Required


The portion of the graph with domain $x \ge 10$ shows positive volume. What does this mean in the context of the problem? *

Explain the meaning of the parts of the graph showing a negative volume. \ast

Name and Password

GOOGLE DOC MATH JOURNAL

CRITERIA

Criteria	
I. Clear Purpose	Why am I assessing?
2. Clear Learning Target(s)	What am I assessing?
3. Quality Assessment	How can I assess it well?
4. Proper Test Administration	How will I ensure test conditions do not interfere with a student's ability to perform well on a test?
5. Effective Communication of Results	How will I share results for maximum impact?

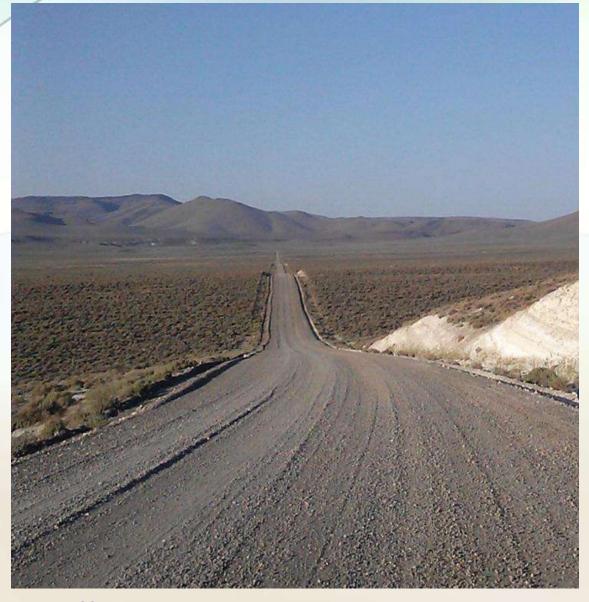
RESOURCES

Study: Boaler, J., & Foster, D. (2014). Raising Expectations and Achievement. The Impact of Wide Scale Mathematics Reform Giving All Students Access to High Quality Mathematics.

http://www.youcubed.org

Tasks: SBAC Grade 4 and 6 Math Performance Task http://sbac.portal.airast.org/practice-test/resources/

Mathematics Assessment Project: Baseball Jerseys


http://map.mathshell.org/materials/tasks.php?taskid=362&subpa

ge=apprentice

Videos: Steve McKinney: Keeping It Real <u>Americaachieves.org</u>
http://bcove.me/eqw8vuyz

How to Learn Math: Teaching for a Growth Mindset http://youtu.be/EbhJk62N051

bryan.toller@state.or.us 503-947-5832