Show all work to receive credit.

1) A point is moving on the graph of $[5x^3 + 6y^3 = xy]$. When the point is at $(\frac{x}{11}, \frac{y}{11})$, its y-coordinate is increasing at a speed of 5 units per second. What is the speed of the x-coordinate at that time and in

which direction is the x-coordinate moving?

$$\frac{15x^{2}}{dt} + \frac{18y^{2}}{dt} + \frac{1}{18y^{2}} \frac{dy}{dt} = x \frac{dy}{dt} + y \frac{dx}{dt} \quad [4] \text{ derif.}$$

$$\frac{15}{121} \frac{dx}{dt} + \frac{18}{121} (5) = \frac{1}{11} (5) + \frac{1}{11} \frac{dx}{dt} \quad [1] \text{ phyin}$$

$$\frac{dx}{dt} = \frac{2}{11} \frac{dx}{dt} =$$

2) A cherry flavored raspa sno-cone is leaking from its paper cone at a rate of 2 cubic inches per minute. The paper cone's top radius is 2 inches and is 5 inches tall. When the depth of melted cherry raspa when h = 3in mixture is 3 inches,

c) If Gooby has a small cylindrical cup with a 2 inch diameter beneath the leaking raspa, at this moment, how fast is the height of the raspa juice in the "catch cup" changing?

Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship B is traveling due north away from Lighthouse Rock at a speed of 10 km/hr. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t, as shown in the figure at right.

(a) Find the distance, in kilometers, between Ship A and Ship B when x = 4 km and y = 3 km.

$$\frac{d}{dt} \left[x^{2} + y^{2} = z^{2} \right] \qquad [1] 19^{10}$$

$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt} = [1] 19^{11}$$

$$4(-15) + 3(10) = (5) \frac{dz}{dt}$$

$$-30 = 5 \frac{dz}{dt}$$

$$-6 = \frac{dz}{dt} = 2$$

$$|x| = 3$$

(b) Find the rate of change, in km/hr, of the distance between the two ships when x = 4 km and y = 3 km. $\frac{dz}{dt} \left| \begin{array}{c} x = 4 \text{ km} \\ y = 3 \text{ km} \end{array} \right| = 7$

(c) Let θ be the angle shown in the figure. Find the rate of change of θ , in radians per hour, when x = 4 km and y = 3 km.

and
$$y = 3 \text{ km}$$
.

$$\frac{d}{dt} \left[\frac{d\theta}{dt} = \frac{1}{x} \right] = \frac{1}{2} \left[\frac{dt}{dt} \right] = \frac{1}{4} \left[$$

Show all work to receive credit.

1) A point is moving on the graph of $5x^3 + 6y^3 = xy$. When the point is at $\left(\frac{1}{11}, \frac{1}{11}\right)$, its y-coordinate is increasing at a speed of 5 units per second. What is the speed of the x-coordinate at that time and in which direction is the x-coordinate moving?

- 2) A cherry flavored raspa sno-cone is leaking from its paper cone at a rate of 2 cubic inches per minute. The paper cone's top radius is 2 inches and is 5 inches tall. When the depth of melted cherry raspa mixture is 3 inches,
 - a) How fast is the radius of the raspa changing?

- b) How fast is the raspabertty melt leaking onto Gooby's clothes?
- c) If Gooby has a small cylindrical cup with a 2 inch diameter beneath the leaking raspa, at this moment, how fast is the height of the raspa juice in the "catch cup" changing?

Ship A is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship B is traveling due north away from Lighthouse Rock at a speed of 10 km/hr. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t, as shown in the figure at right.

(a) Find the distance, in kilometers, between Ship A and Ship B when x = 4 km and y = 3 km.

(b) Find the rate of change, in km/hr, of the distance between the two ships when x = 4 km and y = 3 km.

(c) Let θ be the angle shown in the figure. Find the rate of change of θ , in radians per hour, when x = 4 km and y = 3 km.