N EXERCISES

Let k represent any transformation of the plane. a. State the domain of k. b. State the range of k.

c. True or False: Transformation k is a one-to-one function.

In 2-8, for each figure drawn or named:

- a. Does the figure have line symmetry? If yes, how many lines of symmetry does the figure have?
- b. Does the figure have point symmetry?
- c. Does the figure have rotational symmetry? If yes, find the degree measure of the smallest angle of rotation for which the figure is its own image.

- 6. Parallelogram
- 7. Regular pentagon
- 8. Equilateral triangle

In 9-20, find the image of (6,-5) under each given transformation.

- Reflection in the x-axis.
- 10. Reflection in the y-axis.
- 11. Reflection in the line x = 4.
- 12. Reflection in the line y = 2.
- 13. Reflection in the line y = x.
- 14. Reflection in the origin.
- 15. Quarter-turn about the origin.
- 16. Dilation of $1\frac{1}{2}$, center at origin.

- 17. $T_{3,-8}$
- 18. T-6.5

In 21-24, in each case, write the coordinate rule of the composition using the transformations F(x, y) = (2x, y) and G(x, y) = (x + 3, -y).

In 25-37, k and n are lines of symmetry for square ABCD, and M is the midpoint of diagonal \overline{BD} . In each case, find the image under the given composition.

26.
$$r_n \circ r_k(B)$$

27.
$$r_n \circ r_k \circ r_n(D)$$

28.
$$r_k \circ r_n \circ r_k(D)$$

29.
$$\mathbf{r}_{M} \circ r_{k}(C)$$

30.
$$r_n \circ \mathbf{f}_M(A)$$

31.
$$\mathbf{r}_M \circ r_n \circ r_k(A)$$

33.
$$r_n \circ r_k(\overline{BC})$$

34.
$$R_{M,270} \circ r_k(DA)$$

32.
$$r_k \circ r_n(\overline{BC})$$

35. $r_n \circ R_{M,90}(\overline{BA})$

36.
$$r_n \circ R_{M,-90}(\overline{BC})$$

- 37. By finding the image for each vertex of the square under the given composition, we can show that $\mathbf{f}_M \circ r_k \circ r_n$ is equivalent to
 - (1) $R_{M,90}$
- (2) R_{M,270}
- (3) r_k
- $(4) r_n$

::

- 38. The vertices of $\triangle ABC$ are A(1,-4), B(3, 1), and C(3,-3).
 - a. On graph paper, draw and label $\triangle ABC$.
 - b. Find the coordinates of the vertices of $\triangle A'BC'$, the image of $\triangle ABC$ reflected over the y-axis. Graph $\triangle A'B'C'$.
 - c. Find the coordinates of the vertices of $\triangle A''B''C''$, the image of $\triangle A'B'C'$ reflected over the line y = -x. Graph $\triangle A''B''C''$.
 - d. Find the coordinates of the vertices of $\triangle A^m B^m C^m$, the image of $\triangle A''B''C''$ under translation $T_{7,-2}$. Graph $\triangle A'''B'''C'''$.

of the single transformation that is equivalent to the stated composition.

1.1

41.
$$D_2 \circ r_{y=x}$$

43.
$$r_{x-axis} \circ T_{-1,-2} \circ D_3$$

$$\triangle ABC \rightarrow \triangle A'B'C'$$
 under transformation $F(x, y) = (4 - x, -y)$.

$$\triangle ABC \rightarrow \triangle A''B''C''$$
 under transformation $G(x, y) = (-x, y - 1)$.

$$\triangle ABC \rightarrow \triangle A'''B'''C'''$$
 under transformation $H(x, y) = (2x, y + 3)$.

- a. On one set of axes, graph and label $\triangle ABC$, $\triangle A'B'C'$, $\triangle A''B''C''$, and $\triangle A'''B'''C'''$.
- b. Which transformation, F, G, or H, does not preserve order?
- c. Which transformation, F, G, or H, is not an isometry?

In 45-47, select the numeral preceding the expression that best completes the sentence or answers the question.

- 45. If lines a and b are parallel, then the composition $r_a \circ r_b$ is equivalent to a
 - (1) rotation
- (2) translation
- (3) glide reflection
- (4) dilation
- 46. If line c intersects line d, the composition $r_c \circ r_d$ is equivalent to a
 - (1) rotation
- (2) translation
- (3) glide reflection (4) dilation
- 47. The single transformation that is equivalent to the composition $r_{y=x} \circ r_{x-axis}$

Ex. 39

- is
- (1) R_{90}
- (2) R_{180}
- $(3) R_{270}$
- (4) r_{ym-x}

In 48-50, in each case: a. Tell whether the given set of transformations is a group under the operation of composition. b. If the system is not a group, explain why.

(Translations, •) (Line reflections, •)

CHMULATIVE REVIEW

- 1. Simplify: -
- 2. Solve and check: $x \sqrt{2x + 1} = 7$.
- \nearrow Two secants, \overline{PAB} and \overline{PCD} are drawn to a circle from P. Chord \overline{DE} bisects \overline{AB} at F. DF = 9, FE = 4, AP = 8, and CD is 4 less than PC.
 - Find a. AB
- b. PC c. CD
- 4. Let f(x) = 3x 4 and $g(x) = x^2$. Find:
 - $\mathbf{a} \cdot \mathbf{f}(0)$
- c. f(g(-1))f. $f^{-1}(x)$

- **d.** $f \circ g(x)$