| NAME | | | DATE | | _ | |--|--|---|--|---|-----------------| | Scenario | | | | | | | An apparatus to determine the the right. The box is slowly robox makes an angle θ with the starts to slide, and at this inst Thus, at angle θ , the block sliferce constant k , and comprescoming to rest. | tated counterclockwise
thorizontal, the block of
ant, the box is stopped
des a distance d, hits t | . When the
of mass m just
I from rotating.
The spring of | Kana | d | E B | | Data Analysis | | | Lacos | | ` | | Draw qualitative energy bar of
block-Earth-spring-box system | = | | | | 1 | E | - K II II - | | II F. | | | F | | - K U _g U _s — Initial position | → K U _g | U _s E _{therm} | → K | U_g U_s $x=x_c$ | E _{th} | | - K U _g U _s Initial position | → κ υ _g | | → κ | U_g U_s $x=x_s$ | E _{th} | | Initial position Argumentation | | X=d | | <i>x=x_s</i> | E _{th} | | Initial position | a second block with a solock is made of the sa | X=d mass 2 m is subj me materials as t | jected to the same
the first block. Indi | $x=x_s$ conditions as | E _{th} | | Argumentation In a subsequent experiment, a the original block. This new by values of the quantities below | a second block with a solock is made of the sa
would change in the s | X=d mass 2 m is subj me materials as t | jected to the same
the first block. Indi | x=x _s conditions as cate how the | E _{th} | | Argumentation In a subsequent experiment, a the original block. This new by values of the quantities below | a second block with a solock is made of the sa
would change in the s | X=d mass 2 m is subj me materials as t second experime | jected to the same
the first block. Indi
nt. | x=x _s conditions as cate how the | | | Argumentation In a subsequent experiment, a the original block. This new by values of the quantities below | a second block with a solock is made of the sawould change in the sacrease | mass 2 m is subj
me materials as t
second experime | jected to the same
the first block. Indi
nt. | x=x _s conditions as cate how the | E | | Initial position Argumentation In a subsequent experiment, at the original block. This new by values of the quantities below q | a second block with a solock is made of the sawould change in the sacrease | mass 2 m is subj
me materials as t
second experime | jected to the same
the first block. Indi
nt. | x=x _s conditions as cate how the | E _{th} | | Initial position Argumentation In a subsequent experiment, at the original block. This new by values of the quantities below q | a second block with a solock is made of the sawould change in the sacrease | mass 2 m is subj
me materials as t
second experime | jected to the same
the first block. Indi
nt. | x=x _s conditions as cate how the | Eth | | Initial position Argumentation In a subsequent experiment, at the original block. This new by values of the quantities below q | a second block with a solock is made of the sawould change in the sacrease | mass 2 m is subj
me materials as t
second experime | jected to the same
the first block. Indi
nt. | x=x _s conditions as cate how the | Ethi | ## x_s Increase _____ Decrease _____ Remain the same _____ Justify your selection. 4.J Impact of Mass on Conservation of Energy