Lesson 4.6

Practice Level C

1. \triangle *HGL* $\cong \triangle$ *JKM*; AAS **2.** \triangle *PQU* $\cong \triangle$ *VPS*; AAS **3.** \triangle *ABC* $\cong \triangle$ *DEF*; ASA

4. Use the \cong angles in the linear pairs to show $\angle RZS \cong \angle UYT$. Show $\triangle RSZ \cong \triangle UTY$ by AAS, so $\overline{RZ} \cong \overline{YU}$ because they are corresponding parts.

5. Show $\angle FHG \cong \angle JHI$ because they are vertical. Show $\triangle FGH \cong \triangle JIH$ by AAS, so $\overline{FH} \cong \overline{JH}$ because they are corresponding parts.

6. Show $\angle ADE$ is a right \angle . Use SAS to show $\triangle ADE \cong \triangle CDE$, so by corresponding parts, $\angle AED \cong \angle CED$ and $\overline{AE} \cong \overline{CE}$. Use SAS to show $\triangle ABE \cong \triangle CBE$. So by corresponding parts, $\angle 1 \cong \angle 2$. **7.** Show $\triangle HKL \cong \triangle HML$ by ASA, so by corresponding parts, $\angle HKL \cong \angle HML$ and $\overline{HK} \cong \overline{HM}$. Use the congruent angles in the linear pairs to show $\angle HMN \cong \angle HKJ$. By vertical angles, $\angle JHK \cong \angle NHM$. Show $\triangle HJK \cong \triangle HNM$ by ASA, so by corresponding parts, $\angle 1 \cong \angle 2$.

8. Use AAS to show $\triangle ABD \cong \triangle GFD$. Then by corresponding parts $\overline{BD} \cong \overline{FD}$. By vertical angles, $\angle ADB \cong \angle EDF$ and $\angle CDB \cong \angle GDF$. Show $\triangle GFD \cong \triangle EFD$ by AAS, so by corresponding parts $\angle EFG \cong \angle GFD$. Then because they are a \cong linear pair, $\angle EFG$ and $\angle GFD$ are right angles. Use corresponding parts to show $\angle ABD$ is a right angle and linear pair to show $\angle CBD$ is a right \angle . Show $\triangle ABD \cong \triangle CBD$ by SAS. Finally, show that by corresponding parts $\angle 1 \cong \angle 2$.

9. Use the Distance Formula to find the side lengths of the triangles. Use the SSS Congruence Postulate to show that $\triangle ABC \cong \triangle DEF$. Then use the fact that corresponding parts of congruent triangles are congruent to prove that $\angle C \cong \angle F$.

10. Use the Distance Formula to find the side lengths of the triangles. Use the SSS Congruence Postulate to show that $\triangle ABC \cong \triangle DEF$. Then use the fact that corresponding parts of congruent triangles are congruent to prove that $\angle C \cong \angle F$.

*	
11.	
Statements	Reasons
1. $\angle C \cong \angle G$,	1. Given
$\angle D \cong \angle F,$	
$\overline{CD} \cong \overline{GF}$	
2. $\triangle CDH \cong \triangle GFJ$	2. ASA Congruence Postulate
3. \angle <i>FJG</i> \cong \angle <i>DHC</i>	3. Corr. parts of \cong \triangle are \cong .
4. \angle <i>FJG</i> and \angle <i>CJF</i> are	4. Definition of
a linear pair, $\angle DHC$	linear pair
and $\angle GHD$ are a	
linear pair.	
5. \angle <i>FJG</i> and \angle <i>CJF</i> are	5. Linear Pair Post.
supplementary,	
$\angle DHC$ and $\angle GHD$	
are supplementary.	
6. $\angle CJF \cong \angle GHE$	6. Congruent
	Supplements Thm.
12.	
Statements	Reasons
1. $\overline{UT} \parallel \overline{VR}, \overline{QT} \parallel \overline{SR},$	1. Given
$\overline{QU} \cong \overline{SV}$	
2. $\angle QUT \cong \angle SVR$	2. Alt. Exterior Angles Thm.
-	

Answer Key

3. $\angle VRS \cong \angle UTQ$,	3. Alt. Interior
$\angle RVQ \cong \angle TUS$	Angles Thm.
4. $\triangle QUT \cong \triangle SVR$	4. ASA Congruence Post.
5. $\overline{TU} \cong \overline{RV}$	5. Corr. parts of $\cong \mathbb{A}$ are \cong .
6. QV = QU + UV,	6. Angle Addition
$\widetilde{SU} = \widetilde{SV} + UV$	Post.
7. $QU = SV$	7. Def. of congruent angles
8. $\widetilde{Q}V = SV + UV$	8. Subst. Prop. of Equality
9. $\widetilde{Q}V = SU$	9. Transitive Prop. of Equality
10. $\overline{\overline{QV}} \cong \overline{SU}$	10. Def. of congruent segments
11. $\Delta QRV \cong \Delta STU$	11. SAS Congruence Post.
12. $\angle \widetilde{UTS} \cong \angle VRQ$	12. Corr. parts of $\cong \triangle$ are \cong .
13. ~	
Statements	Reasons
1. $m \angle L = m \angle L_1$,	1. Given
$m \angle R = m \angle R_1$	
$LR = L_1R_1$, h and	
h_1 are the heights	
of the \triangle .	
2. $\angle L \cong \angle L_1$,	2. Def. of congruent
$\angle R \cong \angle R_1$	angles
3. $\overline{LR} \cong \overline{L_1R_1}$	3. Def. of congruent segments
4. $\triangle LRO \cong \triangle L_1 R_1 O_1$	4. ASA Congruence Post.
5. $h = h_1$	5. Corresponding parts of $\cong \mathbb{A}$ are \cong .