Answer Key

Lesson 4.6

Challenge Practice

1.	
Statements	Reasons
1. $\angle WVZ \cong \angle YVX$	1. Vertical Angles
	Theorem
2. V is the midpoint of \overline{XZ} .	2. Given
$3.\overline{ZV}\cong\overline{XV}$	3. Definition of midpoint
$4.\overline{XY}\ \overline{ZW}$	4. Given
5. $\triangle WVZ \cong \triangle YVX$	5. ASA Congruence
$S \cdot \triangle W / Z = \triangle I / X$	Postulate
6. $\overline{YV} \cong \overline{WV}$	
$0. \ IV = WV$	6. Corresp. parts of $\cong \triangle$ are \cong .
Statements	Reasons
1. $\angle 2 \cong \angle 1$, $\angle 4 \cong \angle 5$	1. Given
2. ∠1 ≅ ∠3	2. Vertical Angles
	Theorem
3. $m \angle 2 = m \angle 1$,	3. Definition of
$m \angle 1 = m \angle 3$	congruent angles
4. $m \angle 2 = m \angle 3$	4. Substitution property
	of equality
5. ∠2 ≅ ∠3	5. Definition of
	congruent angles
6. $\overline{JL} \cong \overline{JL}$	6. Reflexive property
002 02	of congruence
7. $\triangle JKL \cong \triangle JML$	7. ASA Congruence Postulate
8. $\overline{KL} \cong \overline{ML}$	8. Corresp. parts of $\cong \triangle$ are \cong .
3.	or corresp. parts or \(\triangle \text{arc}\).
Statements	Reasons
1. <i>L</i> is the midpoint	1. Given
of \overline{JN} .	1. Given
2. $\overline{JL} \cong \overline{LN}$	2. Definition of
2. 3L — LIV	midpoint
3. $\overline{PJ}\cong\overline{QN}$,	3. Given
$\frac{1}{PL} \cong \frac{QN}{QL}$	3. Given
4. $\triangle JLP \cong \triangle NLQ$	4. SSS Congruence
2	Postulate
5. $\angle PKJ$ and $\angle QMN$	5. Given
are right angles.	
6. $\angle PKJ \cong \angle QMN$	6. Right Angles
	Congruence Theorem
7. $\angle KJP \cong \angle MNQ$	7. Corresp. parts of $\cong \triangle$ are \cong .
8. $\triangle PKJ \cong \triangle QMN$	8. AAS Congruence Theorem
9. $\angle MQN \cong \angle KPJ$	9. Corresp. parts of $\cong \triangle$ are \cong .
). LIVIQIV — LIVI J	\sim corresp. parts of $-\Delta$ are $-$.

Answer Key

-	
4	
_	

Statements	Reasons
1. $\angle R \cong \angle S$,	1. Given
$\angle 2 \cong \angle 3$	
2. $\overline{TV} \cong \overline{TV}$ 3. $\triangle RTV \cong \triangle SVT$	2. Reflexive property of congruence3. AAS Congruence Theorem
4. $\overline{RT} \cong \overline{SV}$	4. Corresp. parts of $\cong \triangle$ are \cong .
5. ∠5 ≅ ∠6	5. Vertical Angles
	Theorem
6. $\triangle RTU \cong \triangle SVU$	6. AAS Congruence
	Theorem
7. $\overline{RU} \cong \overline{SU}$	7. Corresp. parts of $\cong \triangle$ are \cong .
5.	
Statements	Reasons
1. $\overline{BC} \cong \overline{CD}$,	1. Given
$\overline{AB} \cong \overline{AD}$	
2. $\overline{CA} \cong \overline{CA}$	2. Reflexive property
2 A 1DG - A 1DG	of congruence
$3. \triangle ABC \cong \triangle ADC$	3. SSS Congruence
4. $\angle BCA \cong \angle DCA$	Postulate 4. Corresp. parts of $\cong \triangle$ are \cong .
5. $\overline{CE} \cong \overline{CE}$	5. Reflexive property
3. CL — CL	of congruence
6. $\triangle CEB \cong \triangle CED$	6. SAS Congruence
	Postulate
7. $\angle CEB \cong \angle CED$	7. Corresp. parts of $\cong \triangle$ are \cong .
8. $m \angle CEB =$	8. Definition of
$m \angle CED$	congruent angles
9. <i>m</i> ∠ <i>CEB</i> +	9. Linear Pair Postulate
$m \angle CED = 180^{\circ}$	40.01.00
10. <i>m</i> ∠ <i>CEB</i> +	10. Substitution
$m \angle CEB = 180^{\circ}$ 11. $2m \angle CEB = 180^{\circ}$	property of equality
11. $2m\angle CEB = 180$ 12. $m\angle CEB = 90^{\circ}$	11. Simplify.12. Division property of equality
13. $\angle CEB$ and $\angle CED$	13. Definition of
are right angles.	right angle
14. $\overline{AC} \perp \overline{BD}$	14. Definition of
	perpendicular lines
	_

Answer Key

6			
h			

Statements	Reasons
1. \overline{AB} and \overline{CD} bisect	1. Given
each other at point M .	
2. <i>M</i> is the midpoint	2. Definition of
of \overline{AB} and $\overline{\overline{CD}}$.	segment bisector
3. $\overline{AM}\cong\overline{MB}$,	3. Definition of
$\overline{DM}\cong\overline{MC}$	midpoint
4. $\angle AMD \cong \angle BMC$	4. Vertical Angles Theorem
5. $\triangle AMD \cong \triangle BMC$	5. SAS Congruence Postulate
6. $\angle A \cong \angle B$	6. Corresp. parts
	of $\cong \triangle$ are \cong .
7. $\overline{AD} \parallel \overline{BC}$	7. Alternate Interior Angles Theorem