Answer Key ### Lesson 4.6 #### **Challenge Practice** | 1. | | |--|---| | Statements | Reasons | | 1. $\angle WVZ \cong \angle YVX$ | 1. Vertical Angles | | | Theorem | | 2. V is the midpoint of \overline{XZ} . | 2. Given | | $3.\overline{ZV}\cong\overline{XV}$ | 3. Definition of midpoint | | $4.\overline{XY}\ \overline{ZW}$ | 4. Given | | 5. $\triangle WVZ \cong \triangle YVX$ | 5. ASA Congruence | | $S \cdot \triangle W / Z = \triangle I / X$ | Postulate | | 6. $\overline{YV} \cong \overline{WV}$ | | | $0. \ IV = WV$ | 6. Corresp. parts of $\cong \triangle$ are \cong . | | Statements | Reasons | | | | | 1. $\angle 2 \cong \angle 1$, $\angle 4 \cong \angle 5$ | 1. Given | | 2. ∠1 ≅ ∠3 | 2. Vertical Angles | | | Theorem | | 3. $m \angle 2 = m \angle 1$, | 3. Definition of | | $m \angle 1 = m \angle 3$ | congruent angles | | 4. $m \angle 2 = m \angle 3$ | 4. Substitution property | | | of equality | | 5. ∠2 ≅ ∠3 | 5. Definition of | | | congruent angles | | 6. $\overline{JL} \cong \overline{JL}$ | 6. Reflexive property | | 002 02 | of congruence | | 7. $\triangle JKL \cong \triangle JML$ | 7. ASA Congruence Postulate | | 8. $\overline{KL} \cong \overline{ML}$ | 8. Corresp. parts of $\cong \triangle$ are \cong . | | 3. | or corresp. parts or \(\triangle \text{arc}\). | | Statements | Reasons | | 1. <i>L</i> is the midpoint | 1. Given | | of \overline{JN} . | 1. Given | | 2. $\overline{JL} \cong \overline{LN}$ | 2. Definition of | | 2. 3L — LIV | midpoint | | 3. $\overline{PJ}\cong\overline{QN}$, | 3. Given | | $\frac{1}{PL} \cong \frac{QN}{QL}$ | 3. Given | | 4. $\triangle JLP \cong \triangle NLQ$ | 4. SSS Congruence | | 2 | Postulate | | 5. $\angle PKJ$ and $\angle QMN$ | 5. Given | | are right angles. | | | 6. $\angle PKJ \cong \angle QMN$ | 6. Right Angles | | | Congruence Theorem | | 7. $\angle KJP \cong \angle MNQ$ | 7. Corresp. parts of $\cong \triangle$ are \cong . | | 8. $\triangle PKJ \cong \triangle QMN$ | 8. AAS Congruence Theorem | | 9. $\angle MQN \cong \angle KPJ$ | 9. Corresp. parts of $\cong \triangle$ are \cong . | |). LIVIQIV — LIVI J | \sim corresp. parts of $-\Delta$ are $-$. | | | | ## Answer Key | - | | |---|--| | 4 | | | _ | | | Statements | Reasons | |--|---| | 1. $\angle R \cong \angle S$, | 1. Given | | $\angle 2 \cong \angle 3$ | | | 2. $\overline{TV} \cong \overline{TV}$
3. $\triangle RTV \cong \triangle SVT$ | 2. Reflexive property of congruence3. AAS Congruence Theorem | | 4. $\overline{RT} \cong \overline{SV}$ | 4. Corresp. parts of $\cong \triangle$ are \cong . | | 5. ∠5 ≅ ∠6 | 5. Vertical Angles | | | Theorem | | 6. $\triangle RTU \cong \triangle SVU$ | 6. AAS Congruence | | | Theorem | | 7. $\overline{RU} \cong \overline{SU}$ | 7. Corresp. parts of $\cong \triangle$ are \cong . | | 5. | | | Statements | Reasons | | 1. $\overline{BC} \cong \overline{CD}$, | 1. Given | | $\overline{AB} \cong \overline{AD}$ | | | 2. $\overline{CA} \cong \overline{CA}$ | 2. Reflexive property | | 2 A 1DG - A 1DG | of congruence | | $3. \triangle ABC \cong \triangle ADC$ | 3. SSS Congruence | | 4. $\angle BCA \cong \angle DCA$ | Postulate 4. Corresp. parts of $\cong \triangle$ are \cong . | | 5. $\overline{CE} \cong \overline{CE}$ | 5. Reflexive property | | 3. CL — CL | of congruence | | 6. $\triangle CEB \cong \triangle CED$ | 6. SAS Congruence | | | Postulate | | 7. $\angle CEB \cong \angle CED$ | 7. Corresp. parts of $\cong \triangle$ are \cong . | | 8. $m \angle CEB =$ | 8. Definition of | | $m \angle CED$ | congruent angles | | 9. <i>m</i> ∠ <i>CEB</i> + | 9. Linear Pair Postulate | | $m \angle CED = 180^{\circ}$ | 40.01.00 | | 10. <i>m</i> ∠ <i>CEB</i> + | 10. Substitution | | $m \angle CEB = 180^{\circ}$
11. $2m \angle CEB = 180^{\circ}$ | property of equality | | 11. $2m\angle CEB = 180$
12. $m\angle CEB = 90^{\circ}$ | 11. Simplify.12. Division property of equality | | 13. $\angle CEB$ and $\angle CED$ | 13. Definition of | | are right angles. | right angle | | 14. $\overline{AC} \perp \overline{BD}$ | 14. Definition of | | | perpendicular lines | | | _ | | | | ## Answer Key | 6 | | | | |---|--|--|--| | h | | | | | | | | | | | | | | | Statements | Reasons | |--|--------------------------------------| | 1. \overline{AB} and \overline{CD} bisect | 1. Given | | each other at point M . | | | 2. <i>M</i> is the midpoint | 2. Definition of | | of \overline{AB} and $\overline{\overline{CD}}$. | segment bisector | | 3. $\overline{AM}\cong\overline{MB}$, | 3. Definition of | | $\overline{DM}\cong\overline{MC}$ | midpoint | | 4. $\angle AMD \cong \angle BMC$ | 4. Vertical Angles Theorem | | 5. $\triangle AMD \cong \triangle BMC$ | 5. SAS Congruence Postulate | | 6. $\angle A \cong \angle B$ | 6. Corresp. parts | | | of $\cong \triangle$ are \cong . | | 7. $\overline{AD} \parallel \overline{BC}$ | 7. Alternate Interior Angles Theorem | | | | | | | | | |